首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Two bifunctional linkers, a rigid-rod p-ethynyl-isophthalic acid capped with a Ru(II)-polypyridyl complex and 3-mercaptopropionic acid, were covalently bound to ZnO nanotip films grown by metal-organic chemical vapor deposition (MOCVD) technology. This highly vertically aligned, crystalline form of ZnO had not been functionalized before. The binding was studied by Fourier transform (FT) IR and UV spectroscopies and probed, in the case of the Ru complex, by static and dynamic fluorescence quenching. The molecules did bind through the carboxylic acid groups, and the FT-IR attenuated total reflectance spectra are indicative of a bidentate carboxylate binding mode. Other molecules (heptanoic acid, isophthalic acid, and trimethoxy(2-phenylethyl)silane) were also bound to the ZnO nanotips. A comparison was made with epitaxial ZnO films grown by MOCVD and ZnO mesoporous films prepared from colloidal solutions to investigate the effect of the ZnO morphology. The ZnO nanotips were excellent binding substrates, particularly for the rigid-rod linker. Since ZnO films are etched at low pH (< 4), novel nanotip films made of ternary MgxZn1-xO, which is formed by alloying ZnO with MgO and is more resistant to acids, were developed. The MgxZn1-xO nanotip films were employed to use linkers with acidic groups and to study the effect of pH pretreatment of the surface on the binding.  相似文献   

2.
采用电化学恒电位沉积方法在ITO导电玻璃上和在ZnO薄膜上沉积氧化亚铜(Cu2O),并通过X射线衍射(XRD)和扫描电镜(SEM)对晶体的微观结构和表面形貌进行了分析.在ZnO基底上沉积得到了纳米级的Cu2O粒子并且具有明显择优取向,而在ITO导电玻璃上仅得到粒径为2—5μm的Cu2O粒子,没有明显的择优取向.对薄膜的生长机理进行了讨论.  相似文献   

3.
A square pattern of thioctic acid self-assembled ZnO nanorod arrays was grown on a large 4-in. thermoplastic polyurethane (TPU) flexible substrate via an in situ soluthermal process at low temperature (348 K). With the addition of dimercaptosuccinic acid (DMSA), the surface chemistry forms a disordered ZnO phase, and the morphology of the ZnO-DMSA nanorods changes with various DMSA addition times. As evidenced by the Zn2p3/2, C1s, O1s, S2p, and N-1s scans of X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD), DMSA and proteins were conjugated on the single crystalline ZnO nanorods. The photoluminescence (PL) spectra indicated that the optical properties of ZnO nanorod arrays were changed while the DMSA was inserted, and proteins were conjugated. Furthermore, a control test found that the ZnO nanorods show a significant improvement in sensitive characterization over the ZnO film. As another proteins (e.g., human serum albumin, HSA) were bound onto the ZnO-bovine serum albumin (BSA) nanorod arrays, an enhanced ultraviolet emission intensity was detected. On the basis of these results, one might be expected to conjugate specific biomolecules on the biofunctional ZnO nanorod arrays to detect the complementary biomolecules by PL detecting.  相似文献   

4.
IntroductionZnOis one of the most promising materials for pro-ducing ultraviolet laser at room temperature because ofits wide direct band gap(Eg=3.37eV)and large ex-citonic binding energy of60meV.Recently,much at-tention has been paid to short-wavelength …  相似文献   

5.
Thin hybrid films of ZnO/eosin-Y were prepared by electrodeposition at-0.8 and-0.9 V in aqueous and non-aqueous baths at temperatures ranging from 40 to 90 ℃ with dye concentrations of 100 and 400 μmol·L-1.The films were characterized by X-ray diffraction (XRD),scanning electron microscopy (SEM),energy-dispersive X-ray analysis (EDX),and absorption spectroscopy.The films prepared in a non-aqueous bath were non-porous and did not adsorb dye molecules on their surface.However,the films grown in aqueous media were porous in nature and adsorbed dye during the deposition of ZnO.Preferential growth of the film along the (002) face was observed,and the highest crystallinity was achieved when the film was deposited at 60 ℃.The maximum absorption was achieved for the films grown at 60 to 70 ℃,a deposition potential of-0.9 V,and a dye concentration of 100 μmol·L-1.  相似文献   

6.
IntroductionOver the past few years, wide band gap semicon-ductors have attracted considerable attention because oftheir high commercial demand for the preparation ofblue and UV light emitters. The most promising amongall the known materials used for this…  相似文献   

7.
采用恒电压沉积法在导电玻璃(FTO)上制备了具有三棱柱金字塔状的ZnO/Cu2O异质结薄膜. 利用场发射扫描电镜(FESEM)与X射线衍射仪(XRD)对薄膜的微观形貌和晶体结构进行了表征. 利用表面光电压谱(SPS)、场诱导表面光电压谱(FISPS)和相位谱(PS)研究了单一Cu2O与ZnO/Cu2O异质结薄膜的表面光伏性质. 结果表明, 与单一Cu2O薄膜相比, ZnO/Cu2O异质结薄膜的光伏响应范围拓展到了600~800 nm. 根据SPS, FISPS和PS的作用原理, 拓展部分的光伏响应归因于ZnO/Cu2O异质结中Cu2O层的深能级跃迁, 该跃迁在ZnO-Cu2O界面电场(方向由ZnO指向Cu2O)的作用下得到加强, 同时深能级跃迁产生的电子-空穴对在ZnO-Cu2O界面电场的作用下得到了有效分离和传输.  相似文献   

8.
赵新飞  陈浩  吴昊  王睿  崔义  傅强  杨帆  包信和 《物理化学学报》2018,34(12):1373-1380
利用NO2或O2作为氧化剂,研究了氧化锌在Au(111)和Cu(111)上的生长和结构。NO2表现了更好的氧化性能,有利于有序氧化锌纳米结构或薄膜的生长。在Au(111)和Cu(111)这两个表面上,化学计量比氧化锌都形成非极性的平面化ZnO(0001)的表面结构。在Au(111)上,NO2气氛下室温沉积锌倾向于形成双层氧化锌纳米结构;而在更高的沉积温度下,在NO2气氛中沉积锌则可同时观测到单层和双层氧化锌纳米结构。O2作为氧化剂时可导致形成亚化学计量比的ZnOx结构。由于铜和锌之间的强相互作用会促进锌的体相扩散,并且铜表面可以被氧化形成表面氧化物,整层氧化锌在Cu(111)上的生长相当困难。我们通过使用NO2作为氧化剂解决了这个问题,生长出了覆盖Cu(111)表面的满层有序氧化锌薄膜。这些有序氧化锌薄膜表面显示出莫尔条纹,表明存在一个ZnO和Cu(111)之间的莫尔超晶格。实验上观察到的超晶格结构与最近理论计算提出的Cu(111)上的氧化锌薄膜结构相符,具有最小应力。我们的研究表明,氧化锌薄膜的表界面结构可能会随氧化程度或氧化剂的不同而变化,而Cu(111)的表面氧化也可能影响氧化锌的生长。当Cu(111)表面被预氧化成铜表面氧化物时,ZnOx的生长模式会发生变化,锌原子会受到铜氧化物晶格的限域形成单位点锌。我们的研究表明了氧化锌的生长需要抑制锌向金属基底的扩散,并阻止亚化学计量比ZnOx的形成。因此,使用原子氧源有利于在Au(111)和Cu(111)表面上生长有序氧化锌薄膜。  相似文献   

9.
High-quality MgxZn1-xO thin films were grown on sapphire(0001 ) substrates with a ZnO buffer layer of different thicknesses by means of metal-organic chemical vapor deposition. Diethyl zinc, bis-cyclopentadienyl-Mg and oxygen were used as the precursor materials. The crystalline quality, surface morphologies and optical properties of the Mg, Zn1-xO films were investigated by X-ray diffraction, atomic force microscopy and photoluminescence spectrometry. It was shown that the quality of the MgxZn1-xO thin films depends on the thickness of the ZnO buffer layer and an Mg, Zn1-xO thin film with a ZnO buffer layer whose thickness was 20 nm exhibited the best crystal-quality, optical properties and a flat and dense surface.  相似文献   

10.
Citric acid is a widely used surface-modifying ligand for growth and processing of a variety of nanoparticles; however, the inability to easily prepare derivatives of this molecule has restricted the development of versatile chemistries for nanoparticle surface functionalization. Here, we report the design and synthesis of a citric acid derivative bearing an alkyne group and demonstrate that this molecule provides the ability to achieve stable, multidentate carboxylate binding to metal oxide nanoparticles, while also enabling subsequent multistep chemistry via the Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. The broad utility of this strategy for the modular functionalization of metal oxide surfaces was demonstrated by its application in the CuAAC modification of ZnO, Fe(2)O(3), TiO(2), and WO(3) nanoparticles.  相似文献   

11.
Thin toluidine blue (TBO) and zinc oxide (ZnO) hybrid films have been grown on glassy carbon electrode (GCE) and indium tin oxide coated (SnO2) glass electrodes by using cyclic voltammetry (CV). Scanning electron microscopy (SEM) images revealed spherical and beads‐like shape of highly oriented TBO/ZnO hybrid films. Energy dispersive spectrometry (EDS) results declared that the films composed mainly of Zn and O. Moreover, TBO/ZnO hybrid films modified electrode is electrochemically active, dye molecules were not easily leached out from the ZnO matrix and the hybrid films can be considered for potential applications as sensor for amperometric determination of reduced nicotinamide adenine dinucleotide (NADH) at 0.0 V. A linear correlation between electrocatalytic current and NADH concentration was found to be in the range between 25 μM and 100 μM in phosphate buffer. In addition, we observed that dopamine, ascorbic acid and uric acid are not interference in amperometric detection of NADH in this proposed method. In addition, TBO/ZnO hybrid film modified electrode was highly stable and its response to the NADH also remained relentless.  相似文献   

12.
Photoinduced hydrophilicity of heteroepitaxially grown ZnO thin films   总被引:2,自引:0,他引:2  
Single crystalline ZnO thin films were heteroepitaxially grown on sapphire substrates by rf-magnetron sputtering. The ZnO films on sapphire A and C face were oriented along the (0001) direction, whereas the ZnO film on sapphire R face was oriented along the (11-20) direction. The rate of photoinduced hydrophilic conversion strongly depended on the surface crystal structure. The ZnO film oriented along the (11-20) direction exhibited a higher hydrophilicizing rate than those oriented along the (0001) direction. The high hydrophilicizing rate of the ZnO oriented along the (11-20) direction is due to its surface atomic arrangement. The outermost layer of the ZnO surface of the (11-20) face contains oxygen ions, which are considered to be energetically reactive sites and responsible for the hydrophilic conversion.  相似文献   

13.
Nanocomposites composed of nano-fibrous ZnO thin films and porous silicon (PS) were prepared and examined by atomic force microscopy (AFM), X-ray diffraction (XRD), Raman spectroscopy, and photoluminescence (PL) to investigate their structural and optical properties. PS, consisting of irregular and random nanosized-pores, was prepared by electrochemical anodization. The nano-fibrous ZnO thin films were grown on PS by the sol-gel spin-coating method. The texture coefficient (TC (hkl)) of the nano-fibrous ZnO thin films was calculated to determine the preferred orientation. The nano-fibrous ZnO thin films were grown with a c-axis preferred orientation. The residual stress in the films was reduced in the case of PS. The observed broad PL emission peak from 460 to 598 nm was attributed to coupled emission from ZnO to PS. The results show that white light luminescence with blue, green, and red emission peaks having highly uniform intensities can be obtained from the nanocomposite via a relatively simple and low-cost sol-gel spin-coating method.  相似文献   

14.
通过低温水热法成功地将ZnO纳米棒阵列定向生长在了介孔锐钛矿TiO2纳米晶薄膜上,并主要利用X射线衍射、场发射扫描电子显微镜和光致发光光谱等对其进行了表征。所制备的纳米棒具有六边形的端面,纳米棒的尺寸及端面边长分布范围窄,并且沿c轴方向(002)表现出了明显的择优化生长。此外,相比于玻璃基底或TiO2纳米颗粒薄膜,生长在介孔TiO2薄膜上的ZnO纳米棒阵列表现出了较好的取向生长,表明基底的表面结构和组成对ZnO纳米棒阵列的生长有显著的影响。根据基底有序的多孔结构,讨论了纳米棒阵列可能的生长机理。所得到的ZnO纳米棒阵列在室温下分别表现出了以370 nm为中心的强近紫外光和以530 nm为中心的弱绿光两条荧光谱带。  相似文献   

15.
Thin films of ZnO were grown by the sol–gel method using spin-coating technique on (0001) sapphire substrates. The effect of doping under Ar/H2 atmosphere on the structural and electrical properties of ZnO was investigated by means of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), I–V characterization, Hall effect and micro-photoluminescence. The films that were annealed at 600 °C in Ar/H2 (95/5) % atmosphere showed (002) a predominant orientation. The crystalline nature of 2 mol.  % of Li doped films were better when compared to 1 mol.  % of Li doped films. The incorporation of Li in ZnO lattice was confirmed by X-ray photoelectron spectroscopy, and micro-photoluminescence. Hall effect measurements and I–V characterization of the Li doped ZnO thin films exhibited a better p-type behavior.  相似文献   

16.
A new concept for the efficient synthesis of cationic dendrons, 4-tert-butyl-1-(3-(3,4-dihydroxybenzamido)benzyl)pyridinium bromide (17), 1,1'-(5-(3,4-dihydroxybenzamido)-1,3-phenylene)bis(methylene)bis(4-tert-butylpyridinium) bromide (18), N1,N7-bis(3-(4-tert-butyl-pyridium-methyl)phenyl)-4-(3-(3-(4-tert-butyl-pyridinium-methyl)phenyl-amino)-3-oxopropyl)-4-(3,4-dihydroxybenzamido)heptanediamide tribromide (19), and N1,N7-bis(3,5-bis(4-tert-butyl-pyridium-methyl)phenyl)-4-(3-(3,5-bis(4-tert-butyl-pyridinium-methyl)phenylamino)-3-oxopropyl)-4-(3,4-dihydroxybenzamido)heptanediamide hexabromide (20), and their facile binding to zinc oxide (ZnO) nanostructures is introduced. Dendrons containing highly reactive benzylic bromides reacted readily with 4-tert-butyl-pyridine and resulted in cationic dendrons. Furthermore, these permanently positively charged dendrons were equipped with a catechol anchor group. This enabled ZnO surface functionalization by simple immersion. The adsorption of 17, 18, 19, and 20 on the colloidal nanoparticles was monitored by Langmuir isotherms. The highest obtained experimental loadings correspond to 99.5%, 98.6%, 99.1%, and 42.5% of the particle surface for 17, 18, 19, and 20, respectively. These results indicate insufficient adsorption of the largest molecule 20 leading to reduced colloidal stability of the nanoparticles, while an enhanced stability after grafting with 17, 18, and 19 was observed. Mesoporous films suitable for the use as electrodes in dye-sensitized solar cells (DSSCs) were prepared. Subsequently, the films were functionalized with 18, 19, or 20 and sensitized with zinc-5,15-bis-[2',6'-bis-{2',2'-bis-(carboxy)-ethyl}-methyl-4'-tert-butyl-pheny]-10,20-bis-(4'-tert-butylphenyl)porphyrin-octasodium-salt. UV-vis absorption spectra confirmed that 18, 19, and 20 are suitable for the stable electrostatic attachment of the dye. Current-voltage characteristics of complete cells demonstrated that increasing positive functionalization of the ZnO surface leads to decreased open circuit voltages (V(oc)). All V(oc) values were around 0.4 V with a maximum for the 18 functionalized ZnO film of 0.45 V. The maximum cell efficiency obtained (0.31%) is rather high, considering the narrow spectral absorption of the dye and the rather thin ZnO films used. Finally, incident photon to current efficiency (IPCE) measurements confirmed photoinduced electron injection from the dye. These features are important assets for applications in particle technology and even facilitated advanced devices like a supramolecular DSSC complete with a subsequent layer of negatively charged porphyrins.  相似文献   

17.
ZnO thin films were grown by pulsed laser deposition on titanium substrates at different substrate temperatures ranging from 300 to 700 °C. X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS),photoluminescence, and Raman spectroscopy are employed to investigate the change of properties. XRD, XPS, and Raman data showed that the films consisted of TiO2 at high substrate temperature, which will deteriorate the crystallization quality of ZnO films. The optimum temperature for the growth of ZnO films on the Ti substrate is about 500 °C in this paper. The ZnO films grown on titanium substrate can be used in direct current, microwave, and medical applications. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
Sol–gel zinc oxide (ZnO) thin films generally have non-uniform stripes. After annealing at high temperatures, these thin films are rough and granular. When ZnO rods are grown on such rough and non-uniform surface with the hydrothermal method, collimation, crystalline structure, and defect density are very poor. Here we explore a method to solve this problem. The ZnO thin film is first coated with an Au layer to prohibit the vertical extension of crystallization during the annealing period. As a result, the surface morphology of ZnO thin film is very flat and uniform after annealing. Afterwards, the ZnO rods are grown on the flat and uniform thin film, which gives rise to ZnO rods with very good collimation and crystalline structure. The extremely flat ZnO thin film even enables the fabrication of patterned ZnO rod arrays with regular shapes through lithography.  相似文献   

19.
Zinc oxide (ZnO) is an important material for hybrid inorganic-organic devices in which the characteristics of the interface can dominate both the structural and electronic properties of the system. These characteristics can be modified through chemical functionalization of the ZnO surface. One of the possible strategies involves covalent bonding of the modifier using silane chemistry. Whereas a significant body of work has been published regarding silane attachments to glass and SiO2, there is less information about the efficacy of this method for controlling the surface of metal oxides. Here we report our investigation of molecular layers attached to polycrystalline ZnO through silane bonding, controlled by an amine catalyst. The catalyst enables us to use triethoxysilane precursors and thereby avoid undesirable multilayer formation. The polycrystalline surface is a practical material, grown by sol-gel processing, that is under active exploration for device applications. Our study included terminations with alkyl and phenyl groups. We used water contact angles, infrared spectroscopy, and X-ray photoemission spectroscopy to evaluate the modified surfaces. Alkyltriethoxysilane functionalization of ZnO produced molecular layers with submonolayer coverage and evidence of disorder. Nevertheless, a very stable hydrophobic surface with contact angles approaching 106 degrees resulted. Phenyltriethoxysilane was found to deposit in a similar manner. The resulting surface, however, exhibited significantly different wetting as a result of the nature of the end group. Molecular layers of this type, with a variety of surface terminations that use the same molecular attachment scheme, should enable interface engineering that optimizes the chemical selectivity of ZnO biosensors or the charge-transfer properties of ZnO-polymer interfaces found in oxide-organic electronics.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号