首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
油润滑下钢严重磨损表面的分形特征   总被引:2,自引:0,他引:2  
张人佶 《摩擦学学报》1993,13(4):343-348
本文在MHK-500型环-块试验机上于20号内燃机油润滑下对45^#钢(炉冷)、45^#(水淬)、GCr15钢和W18Cr4V钢进行了滑动磨损试验,得到了表征这4种钢试样由轻微磨损向严重磨损转变的P(临界载荷)-V(临界滑动速度)曲线。对严重磨损表面进行扫描电子显微镜观测的结果表明,在一定的标度范围内其表现裂纹具有分裂特征。在给定的试验条件下,利用Sandbox法测量出上述4种钢严重磨损表面裂纹的  相似文献   

2.
Effects of engine placement on flutter characteristics of a very flexible high-aspect-ratio wing are investigated using the code NATASHA (Nonlinear Aeroelastic Trim And Stability of HALE Aircraft). Gravity for this class of wings plays an important role in flutter characteristics. In the absence of aerodynamic and gravitational forces and without an engine, the kinetic energy of the first two modes are calculated. Maximum and minimum flutter speed locations coincide with the area of minimum and maximum kinetic energy of the second bending and torsion modes. Time-dependent dynamic behavior of a turboshaft engine (JetCat SP5) is simulated with a transient engine model and the nonlinear aeroelastic response of the wing to the engine’s time-dependent thrust and dynamic excitation is presented. Below the flutter speed, at the wing tip and behind the elastic axis, the impulse engine excitation leads to a stable limit cycle oscillation; and for the ramp kind of excitation, beyond the flutter speed, at 75 % span, behind the elastic axis, it produces chaotic oscillation in the wing. Both the excitations above the flutter speed are stabilized, inboard of the wing.  相似文献   

3.
Improved understanding of in-cylinder flows requires knowledge from well-resolved experimental velocimetry measurements and flow simulation modeling. Engine simulations using large eddy simulations (LES) are making large progress and the need for well documented velocimetry measurements for model validation is high. This work presents velocimetry measurements from PIV, high-speed PIV, stereoscopic PIV, and tomographic PIV to extensively describe the in-cylinder flow field in a motored optical engine operating at 800 RPM. These measurements also establish a comprehensive database designed for LES model development and validation. Details of the engine, engine accessory components, and well-controlled boundary conditions and engine operation are presented. The first two statistical moments of the flow field are computed and show excellent agreement among the PIV database. Analysis of statistical moments based on limited sample size is presented and is important for modeling validation purposes. High-speed PIV resolved the instantaneous flow field throughout entire engine cycles (i.e. 719 consecutive crank-angles), while tomographic PIV images are further used to investigate the 3D flow field and identify regions of strong vortical structures identified by the Q-criterion. Principle velocity gradient components are computed and emphasize the need to resolve similar spatial scales between experimental and modeling efforts for suitable model validation.  相似文献   

4.
This paper presents highly resolved large eddy simulations (LES) of an internal combustion engine (ICE) using an immersed boundary method (IBM), which can describe moving and stationary boundaries in a simple and efficient manner. In this novel approach, the motion of the valves and the piston is modeled by Lagrangian particles, whilst the stationary parts of the engine are described by a computationally efficient IBM. The proposed mesh-free technique of boundary representation is simple for parallelization and suitable for high performance computing (HPC). To demonstrate the method, LES results are presented for the flow and the combustion in an internal combustion engine. The Favre-filtered Navier-Stokes equations are solved for a compressible flow employing a finite volume method on Cartesian grids. Non-reflecting boundary conditions are applied at the intake and the exhaust ports. Combustion is described using a flame surface density (FSD) model with an algebraic reaction rate closure. A simplified engine with a fixed axisymmetric valve (see Appendix A) is employed to show the correctness of the method while avoiding the uncertainties which may be induced by the complex engine geometry. Three test-cases using a real engine geometry are investigated on different grids to evaluate the impact of the cell size and the filter width. The simulation results are compared against the experimental data. A good overall agreement was found between the measurements and the simulation data. The presented method has particular advantages in the efficient generation of the grid, high resolution and low numerical dissipation throughout the domain and an excellent suitability for massively parallel simulations.  相似文献   

5.
喷嘴结构对液氧煤油火箭发动机高频燃烧不稳定性的影响   总被引:3,自引:0,他引:3  
王枫  李龙飞  张贵田 《实验力学》2012,27(2):178-182
为了筛选高压补燃循环液氧煤油火箭发动机的喷嘴,在喷注单元低压高频燃烧不稳定性模拟实验系统上开展实验,研究了喷嘴结构对燃烧稳定性边界的影响。实验使用气态空气与氧气的混合物作为氧化剂,加热的煤油蒸汽作为燃料;喷嘴为全尺寸气液同轴直流离心式喷嘴,模拟燃烧室与真实燃烧室的固有声学频率相等。根据测量模拟燃烧室内的脉动压力区分大幅振荡、小幅振荡和稳定工作。研究结果表明,喷嘴长度、缩进室长度和入口节流嘴直径对高频燃烧不稳定性裕量有很大影响,并存在相对最佳值。  相似文献   

6.
Thin-film technology has been used to measure the heat transfer coefficient and cooling effectiveness over heavily film cooled nozzle guide vanes (NGVs). The measurements were performed in a transonic annular cascade which has a wide operating range and simulates the flow in the gas turbine jet engine. Engine-representative Mach and Reynolds numbers were employed and the upstream free-stream turbulence intensity was 13%. The aerodynamic and thermodynamic characteristics of the coolant flow (momentum flux and density ratio between the coolant and mainstream) have been modelled to represent engine conditions by using a foreign gas mixture of SF6 and Argon. Engine-level values of heat transfer coefficient and cooling effectiveness have been obtained by correcting for the different molecular (thermal) properties of the gases used in the engine-simulated experiments to those which exist in the true engine environment. This paper presents the best combined heat transfer coefficient and effectiveness data currently available for a fully cooled, three-dimensional NGVs at engine conditions.  相似文献   

7.
为了研究多管脉冲爆轰发动机外流场复杂波系变化特点,用CE/SE方法对7管脉冲爆 轰发动机内、外流场进行了计算. 7个爆轰管的排列方式是1个居中,另外6个绕其形成环 状排列,管内填充按化学当量比混合的氢气氧气混和物. 计算结果表明:CE/SE方法是一种 好的爆轰波模拟方法,能有效地捕捉激波等强间断;7管脉冲爆轰发动机外流场中存在着多 道相互作用相互影响的激波与膨胀波. 计算结果对多管脉冲爆轰发动机外流场复杂波系的特 性研究具有重要参考价值.  相似文献   

8.
Supersonic combustion and hypersonic propulsion   总被引:9,自引:0,他引:9  
50 多年的努力和曲折经历证明了超声速燃烧冲压发动机概念的可行性. 本文对影响超燃冲压发动机技术成熟的主要因素作了扼要的分析. 高超声速推进的首要问题是净推力, 利用超声速燃烧获得推力遇到各种实际问题的制约, 它们往往互相牵制. 几次飞行试验表明高超声速飞行需要的发动机净推力仍差强人意, 液体碳氢燃料(煤油) 超燃冲压发动机在飞行马赫数5 上下的加速和模态转换过程, 成为高超声速吸气式推进继续发展的瓶颈. 研究表明, 利用吸热碳氢燃料不仅是发动机冷却的需要也是提高发动机推力和性能的关键举措, 燃料吸热后物性改变对燃烧性能的附加贡献对超燃冲压发动机的净推力至关重要.当前, 实验模拟技术和测量技术相对地落后, 无法对环境、尺寸和试验时间做到完全的模拟. 计算流体动力学(Computational Fluid Dynamics, CFD) 逐渐成为除实验以外唯一可用的工具, 然而, 超声速燃烧的数值模拟遇到湍流和化学反应动力学的双重困难. 影响对发动机的性能作正确可靠的评估.提出双模态超燃冲压发动机模态转换、吸热碳氢燃料主动冷却燃料催化裂解与超声速燃烧耦合、燃烧稳定性、实验模拟技术与装置、内流场特性和发动机性能测量、数值模拟中的湍流模型、煤油替代燃料及简化机理等研究前沿课题, 和未来5~10 年重点发展方向的建议.  相似文献   

9.
Within the underlying project, the task was to develop methods for optical measurements in a hydrogen-fuelled engine with direct-injection, with the goal of measuring the jet patterns during injection, the stratification of the charge at ignition point and the propagation of the flame during combustion. Therefore, the method of planar laser-induced-fluorescence (PLIF) was chosen. In order to apply this technique for the named tasks, particular methods the visualisation of fuel distribution and the flame front were developed. The measurements were carried out on a single cylinder research engine installed at the Institute for Internal Combustion Engines at Graz University of Technology. This engine features optical access through a quartz-glass liner and a window in the piston while providing a layout equivalent to modern passenger car engines and the possibility to operate in fired mode. As it is hardly feasible to directly excite molecular hydrogen by means of laser light, it is necessary to add a tracer substance to the fuel that provides high fluorescence intensity while not changing the properties of the fuel. Consequently, Triethylamine was chosen as a tracer to be mixed with hydrogen at 200 ppm, which allows it to be used up to a maximum pressure of 200 bar while still providing a strong LIF signal. Due to the excellent linearity of the signal to the local air/fuel-ratio it was possible to develop a method for the calibration of the images in order to compensate for inhomogeneities of the laser beam and staining of the optical access and to ultimately allow a quantification of the fuel distribution. The results are images scaled on air/fuel-ratio which can be used for a direct optimisation of mixture formation processes and the validation of CFD-models. For the analysis of the combustion process the method was adapted with two different approaches. For homogeneous charges a new method was applied by marking the flame front using the tracer within the fuel, so that both are burned together. However, as this method is limited to measurements with a homogeneous distribution of tracer within the measured volume, an alternative technique had to be applied for the measurement of stratified charges. In this case, a direct visualisation of the flame front was achieved by exciting the OH-radicals formed during combustion. As this method has significantly increased demands on measuring equipment and is more time consuming, both methods are used in parallel on specific measuring tasks.  相似文献   

10.
李业学  范建辉 《实验力学》2015,30(5):658-668
基于图像图形学的YUV颜色模型理论,本文提出了一种间接描述岩石断面形貌的新方法,即YUV维数法。选定一张有m个像素点的彩色数码照片,以每个像素点的Y(灰度)、U、V(色彩和色饱和度)分量分别构造欧氏空间中对应点的z、x、y坐标分量。在每个像素点处均采用上述构建方法,可在欧氏空间中确定m个点(与像素个数相同),连接构造的m个点,即可构建粗糙的YUV表面。采用分形布朗运动理论,导出了n-1~n维分形体的自仿射维数计算方法,并特例化至2~3维。求解YUV表面的自仿射维数,该维数即为YUV维数。为验证YUV维数方法的可行性,分别完成了同一岩石断面的YUV维数数值试验、激光表面仪扫描试验、扫描电子显微镜扫描试验,并采用YUV维数、普通维数和灰度维数分析同一试件的表面形貌特征。对比分析显示,相同试件的YUV维数与普通维数基本相同,且与灰度维数总体趋势近似一致。这证实了YUV维数方法的可行性。另外,计算YUV维数过程中,由于采集初始数据(彩色照片)的设备是数码相机,所以它克服了普通维数的缺陷。同时,YUV模型表征的真彩图片颜色包含了颜色的灰度、色彩和色饱度,而灰度图仅保存了灰度信息。所以,YUV维数比灰度维数更全面充分揭示了图像的分形几何特征。总之,YUV维数有着普通维数和灰度图维数无法比拟的优越性,是一种间接描述表面形貌描述的新方法。  相似文献   

11.
Large-eddy simulation (LES) has been performed for a single-cylinder, two-valve, four-stroke-cycle piston engine through 70 consecutive motored cycles. Initial comparisons of ensemble-averaged velocity fields have been made between LES and experiment, and proper orthogonal decomposition (POD) has been used to analyze the complex in-cylinder turbulent flows. Convergence of POD modes has been quantified, several POD variants have been explored, and sensitivity of results to analyzing different subsets of engine cycles has been studied. In general, it has been found that conclusions that were drawn earlier from POD analysis of a simplified non-compressing piston-cylinder assembly with a fixed valve carry over to the much more complex flow in this motored four-stroke-cycle engine. For the cases that have been examined, the first POD mode essentially corresponds to the ensemble-averaged mean velocity. The number of engine cycles required to extract converged POD modes increases with mode number, and varies with phase (piston position). There is little change in the lower-order phase-invariant POD modes when as few as 24 phases per cycle (30° between samples) are used, and complex 3-D time-dependent in-cylinder velocity fields through full engine cycles can be reconstructed using a relatively small number of POD modes. Quantification of cycle-to-cycle variations and insight into in-cylinder flow dynamics can be extracted through analysis of phase-invariant POD modes and coefficients.  相似文献   

12.
A 2.0 L, 4-cylinder, turbocharged, common rail diesel engine was used for generating soot samples. Three fuels were tested: a “first fill” diesel fuel, a gas-to-liquid fuel (GTL) and a hydrotreated fuel derived from vegetable oils (HVO). A stationary low-load operating mode (1667 rpm and 78 Nm) was selected for testing, and some modifications in the injection process (strategy, timing and pressure) were evaluated experimentally to assess their influence in the soot reactivity. The collected soot samples were characterized using a thermogravimetric analyzer (TGA), a differential scanning calorimeter (DSC), a diffuse reflectance infrared Fourier transform spectrometer (DRIFTS) and a surface area analyzer. All techniques anticipated that HVO and GTL soot samples are more reactive (i.e. show higher potential to be oxidized at lower temperatures leading to more efficient regeneration processes in a Diesel Particle Filter – DPF) compared to diesel soot. Additionally, the four characterization techniques showed the same tendencies when analyzing the effect of the engine operating parameters. In view of the results, the paraffinic fuels – HVO and GTL – here tested confirm their promising perspective for future use in automotive diesel engines, while some guides are proposed to enhance the soot reactivity via calibration of engine operating parameters.  相似文献   

13.
多循环脉冲爆震发动机流场数值研究   总被引:1,自引:0,他引:1  
针对二维带有收敛扩张喷管的脉冲爆震发动机模型,采用带基元化学反应的Euler方程组和H2、空气的9组分20基元反应,对发动机在前六个工作循环的流场进行了数值模拟。通过对前几个循环流场进行比较,发现脉冲爆震发动机在第五个循环后流场就基本稳定,单循环得到的流场和多循环稳定后的流场有很大的差别,同时喷管对发动机内流场影响特别大。  相似文献   

14.
In this paper the aeroelastic instability of a wing, modeled as an orthotropic composite beam with a concentrated mass subjected to the engine thrust, is investigated in an incompressible flow. The wing is modeled using classical beam theory. Wagner function is used to model the unsteady aerodynamic loads, while the engine thrust is modeled as a follower force and a concentrated mass is used to model the engine mass. The numerical results of the developed generic and simple model are compared with published results, and an excellent agreement is observed. The fiber orientation, engine thrust, mass magnitude and its location are reported to have had significant effects on the aeroelastic instability boundaries.  相似文献   

15.
A semi‐implicit scheme is presented for large eddy simulation of turbulent reactive flow and combustion in reciprocating piston engines. First, the governing equations in a deforming coordinate system are formulated to accommodate the moving piston. The numerical scheme is made up of a fourth‐order central difference for the diffusion terms in the transport equations and a fifth‐order weighted essentially nonoscillatory (WENO) scheme for the convective terms. A second‐ order Adams–Bashforth scheme is used for time integration. For higher density ratios, it is combined with a predictor–corrector scheme. The numerical scheme is explicit for time integration of the transport equations, except for the continuity equation which is used together with the momentum equation to determine the pressure field and velocity field by using a Poisson equation for the pressure correction field. The scheme is aimed at the simulation of low Mach number flows typically found in piston engines. An efficient multigrid method that can handle high grid aspect ratio is presented for solving the pressure correction equation. The numerical scheme is evaluated on two test engines, a laboratory four‐stroke engine with rectangular‐shaped engine geometry where detailed velocity measurements are available, and a modified truck engine with practical cylinder geometry where lean ethanol/air mixture is combusted under a homogeneous charge compression ignition (HCCI) condition. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
J. Ghorbanian  M. Ahmadi 《Meccanica》2012,47(8):1987-2004
The beauty and application of thermal analysis concept leads researchers to one of the main steps for thermomechanical design during engine development. The durability and output potential of such engines is strongly linked to the operating temperature of certain key components. Thus, accurate temperature predictions are an essential pre-requisite to the continuing engine evolution. From material science point of view, temperature field in engine main components like cylinder head and block is required to evaluate component functionality under specific load and conditions. Moreover, need for more power and less weight is one of the most important targets in engine design, especially in the case of alternative fuel engines. In order to look at this issue, authors zero in on wide-ranging experimental and analytical study to investigate temperature fields in cylinder head and block of a recently developed turbocharged bi-fuel engine. A?bi-fuel turbocharged engine (CNG and gasoline) were equipped with more than 40 sets of thermocouples and a comprehensive thermal survey was carried out on the fired engine in the various conditions. Thermocouples were installed on different positions of the cylinder block and head to measure material temperatures. Experiments were done both in natural gas and gasoline mode to compare the results. An analytical comparison was made between natural gas and gasoline modes to understand root and effect of heat transfer differences. The presented thermal analysis could be helpful to know material requirements to design and develop turbocharged natural gas engine which is a good candidate as an alternative fuel engine.  相似文献   

17.
Due to the damage caused by stall flutter, the investigation and modeling of the flow over a wind turbine airfoil at high angles of attack are essential. Dynamic mode decomposition (DMD) and dynamic mode decomposition with control (DMDc) are used to analyze unsteady flow and identify the intrinsic dynamics. The DMDc algorithm is found to have an identification problem when the spatial dimension of the training data is larger than the number of snapshots. IDMDc, a variant algorithm based on reduced dimension data, is introduced to identify the precise intrinsic dynamics. DMD, DMDc and IDMDc are all used to decompose the data for unsteady flow over the S809 airfoil that are obtained by numerical simulations. The DMD results show that the dominant feature of a static airfoil is the adjacent shedding vortices in the wake. For an oscillating airfoil, the DMDc results may fail to consider the effect of the input and have an identification problem. IDMDc can alleviate this problem. The dominant IDMDc modes show that the intrinsic flow for the oscillating case is similar to the unsteady flow over the static airfoil. Moreover, the input–output model identified by IDMDc can give better predictions for different oscillating cases than the identified DMDc model.  相似文献   

18.
A dynamic behavior of solid propellant motor composite casing under the action of an internal impact pressure is treated. This pressure describes the engine operation. The thin-walled casing consists of the cylindrical shell and two bottoms. These bottoms are truncated hemisphere. The casing is clamped along two edges of the bottoms. A shear, a rotary inertia and stress–strain relations for an orthotropic material are accounted. Semi analytical method is suggested to analyze the structure stress–strain state. The thin-walled casing dynamic is described by large dimension system of the ordinary differential equations.  相似文献   

19.
Decomposition of Turbulent Velocity Fields in an SI Engine   总被引:3,自引:0,他引:3  
In this study, the turbulence filter, the phase averaging and the proper orthogonal decomposition methods are used to decompose experimentally measured turbulent velocity fields in an SI engine. The radial and circumferential turbulent velocity fields were measured using hot wire anemometer under motored conditions at different engine configurations. The decomposed results of each technique are compared with each other. In addition, the obtained organized and turbulence motions and their energy spectra are examined. Finally, coherent structures of velocity fields and their activities are investigated. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
This study aims to correlate the response of pressure transient test to permeability distribution type. For this purpose, correlated permeability distributions in xy direction are generated using fractional Brownian motion (fBm) as it has been shown in literature that permeability in carbonate reservoirs exhibits an fBm type distribution horizontally. 2-D fBm permeability distributions created using mid point displacement method are employed as data to a black oil simulator. The intermittence exponent, H or fractal dimension of the distribution, D, as defined by D=2 – H, characterizes the distribution type. All permeability distributions are normalized to represent the same arithmetic mean (20, 100, and 500 mD) and uniform variance so that only their fractal dimension that underlies the smoothness of the distribution distinguishes them. Many different realizations of permeability distributions are generated based on the random number seeds used and pressure transient (drawdown) tests are simulated using a black oil simulator package (ECLIPSE 100). Pressure transient analysis is performed using PanSystem package. As a base case and for the comparison purpose, the same procedure is repeated for the totally homogeneous case (the same permeability for all grids) and a random (normally distributed) permeability distribution with the same mean and uniform variance. The effects of permeability distribution type on the pressure response are clarified. A strong impact of heterogeneity is observed as an increase in skin effect with increasing fractal dimension of permeability distribution. This additional (or pseudo) skin effect due to heterogeneity is correlated to the fractal dimension of the permeability distribution. As a further step, the procedure is repeated for different flow rates applied during the drawdown test. The correlation between the fractal dimension of permeability distribution and additional skin is improved by incorporating the rate into it. The methodology followed can be used in the assessment of reservoir heterogeneity quantitatively using pressure transient response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号