首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The activity of Ag-Co zeolite catalysts in the oxidation of CO was studied. The peculiarities of the formation of Ag-Co-NaX systems with different active metal ratios were studied. The temperatures of hydrogen absorption maxima in the H2 temperature-programmed reduction spectra of Ag-Co-NaX systems with different Ag/Co ratios correlated with the catalytic activity in the oxidation of CO. Different valence states of silver (Ag+, Ag0) and cobalt (Co3+, Co2+) were observed by X-ray photoelectron spectroscopy. It was found that the mutual influence of these states in the surface layer of Ag-Co zeolite catalysts affected their activity.  相似文献   

2.
In order to improve the antimicrobial activity of bacterial cellulose (BC), the silver nanoparticles (Ag NPs) were in situ fabricated on the BC membranes, affording BC and Ag hybrid antimicrobial materials, BC + Ag, which possesses excellent antimicrobial performance. Typically, carboxyl groups were firstly introduced into BC by TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical)-mediated oxidation. Then, the carboxyl-functionalized BC was performed with ion-exchange reaction to change the sodium ions into Ag+ by immersing in AgNO3 aqueous solution, generating Ag+ anchored BC. Finally, two types of distinct reductive reagents including NaBH4 and sodium citrate were employed to transform Ag+ into Ag NPs to fabricate BC + Ag. The diameters of Ag NPs were determined to be 3.8 nm for NaBH4-reduced BC + Ag, and 22.0 nm for sodium citrate-reduced one, respectively. The silver content of BC + Ag were determined to be 1.944 and 2.895 wt% for NaBH4-reduced sample and sodium citrate-reduced one, respectively. Two types of BC + Ag both showed a slow and persistent Ag+ release profile, but the NaBH4-reduced one released much more Ag+ than that of sodium citrate under the same measurement condition. In-depth antibacterial analysis via the disc diffusion and colony forming count method disclosed that BC + Ag exhibited strong bactericidal effects against both Escherichia coli and Staphylococcus aureus. And the antibacterial activity of NaBH4-reduced BC + Ag was higher than the sodium citrate-reduced one. Overall, this study would further improve the antibacterial efficiency of BC + Ag.  相似文献   

3.
《中国化学快报》2020,31(6):1530-1534
Methane(CH_4) is not only used as a fuel but also as a promising clean energy source for hydrogen generation.The steam reforming of CH4(SRM) using photocatalysts can realize the production of syngas(CO+H_2) with low energy consumption.In this work,Ag~0/Ag~+-loaded SrTi03 nanocomposites were successfully prepared through a photodeposition method.When the loading amount of Ag is 0.5 mol%,the atom ratio of Ag~+ to Ag~0 was found to be 51:49.In this case,a synergistic effect of Ago and Ag~+ was observed,in which Ago was proposed to improve the adsorption of H_2 O to produce hydroxyl radicals and enhance the utilization of light energy as well as the separation of charge carriers.Meanwhile,Ag~0 was regarded as the reduction reaction site with the function of an electron trapping agent.In addition,Ag~+adsorbed the CH4 molecules and acted as the oxidation reaction sites in the process of photocatalytic SRM to further promote electron-hole separation.As a result,0.5 mol% Ag-SrTi03 exhibited enhancement of photocatalytic activity for SRM with the highest CO production rate of 4.3 μmol g~(-1) h~(-1),which is ca.5 times higher than that of pure SrTi03.This work provides a facile route to fabricate nanocomposite with cocatalyst featuring different functions in promoting photocatalytic activity for SRM.  相似文献   

4.
Nanostructured Ag films composed of nanoparticles and nanorods can be formed by the ultrasonication of ethanol solutions containing Ag2O particles. The present work examined the formation process of these films from ethanol solutions by two different agitation methods, including ultrasonication and mechanical stirring. The mass-transfer process from Ag2O particles to ethanol solvent is accelerated by the mechanical effects of ultrasound. Ag+ ions and intermediately reduced Ag clusters were released into the ethanol. These Ag+ ions and Ag clusters provide absorption bands at 210, 275 and 300 nm in UV-vis spectra. These bands were assigned to the absorption of Ag+, Ag 4 2+ and Agn (n?≈?3). The Agn clusters that readily grow to become Ag nanoparticles were formed due to the surface reaction of Ag2O particles with ethanol under ultrasonication. The reactions of Ag+ ions in ethanol to form Ag nanomaterials (through the formation of Ag 4 2+ clusters) were also accelerated by ultrasonication.  相似文献   

5.
Silica nanoparticles (NPs) dispersed in an aerated aqueous solution containing Ag+ were irradiated to a dose of 10 kGy using 60Co γ-rays. The typical surface plasmon band of Ag NPs was observed around 400 nm, indicating that even in the presence of dissolved oxygen the reduction of Ag+ occurred by silica NPs. Transmission electron microscopy images indicated that Ag NPs formed on the surface of the silica NPs. The subtraction spectra showed broad absorption around 500 nm with the absorbance depending on the dose. The electrons generated by charge separation from silica NPs with a size of about 12 nm reduce Ag+ to Ag0 and form (Ag0) n species on the silica NPs, and the type of (Ag0) n species formed depended on the silica NP, and Ag+ contents, and the dose. In the co-presence of organic molecules on the silica NP such as rhodamine, the absorbance of the surface plasmon band of both Ag NPs and rhodamine decreased, indicating the electrons to participate in the reductive decomposition of rhodamine molecules adsorbed on the silica NP. Furthermore, in the case when the silica NPs contained fluorescein molecules, the fluorescein molecules were also decomposed, indicating that the fluorescein molecules adsorbed on the inner surface of the silica NPs. The addition of I2 as an oxidative reagent prevented the decomposition of the fluorescein molecules, indicating that electrons are the main species emitted from irradiated silica NPs.  相似文献   

6.
The interaction of NO with the surface of model Ag/Al2O3/FeCrAl catalysts containing Ag nanoparticles of different size (1 and 3 nm) was studied. The use of the Auger parameter αAg (E b(Ag3d5/2) + E kin(Ag MVV)) made it possible to reliably identify the change in the chemical state of silver cluster upon their interaction with О2 and NO. The oxygen treatment leads to the oxidation of small Ag nanoparticles (1 nm) and formation of AgO x clusters resulted in the intensive formation of nitrite—nitrate structures on the step of the interaction with NO. These structures are localized on both the silver clusters and Al2O3 surface. An increase in the size of Ag0 nanoparticles to 3 nm results in an increase in the stability of these structures and impedes the Ag0 → AgO x transition, due to which the formation of surface groups NO2 /NO3 is suppressed. The data obtained make it possible to explain the dependence of the activity of the Ag/Al2O3 catalysts in the selective reduction of NO on the Ag nanoparticle size.  相似文献   

7.
采用银修饰介孔磷钨酸/二氧化硅(mesoporous HPW/SiO2)催化剂,并研究了其在模拟柴油和真实柴油氧化脱硫反应中的催化性能。通过银修饰介孔HPW/SiO2,结合银离子对有机硫化物的选择吸附性和HPW对有机硫化物的催化氧化活性,以达到选择氧化脱硫的目的。模拟柴油分别采用石油醚、苯、1-辛烯和二苯并噻吩配制,当银离子与HPW的摩尔比为2时,催化剂具有最高的选择催化氧化活性。采用N2 吸附-脱附、XRD、UV-vis和EDS表征了银修饰的介孔HPW/SiO2催化剂,结果表明,银物种分散均匀且以Ag+形式存在。真实柴油的脱硫研究表明,相比介孔HPW/SiO2催化剂,修饰的催化剂介孔Ag2-HPW/SiO2脱硫率提高了4.6%,初始硫含量为1800×10-6的直馏柴油能被脱除至228×10-6,脱硫率为87.3%。介孔Ag2-HPW/SiO2催化剂具有良好的再生性能,经再生处理后,Ag的损失量极少,其三次脱硫率达到84.8%。  相似文献   

8.
Metal complexes produced by depositing size selected Fe and Ag cluster cations in N2 and O2 matrices respectively are studied by infrared spectroscopy. Unknown species such as Fe(N2)x, Fe3 (N2)x and Ag3(O2)x are observed. The IR spectra of Ag+, Ag 2 + and Ag 9 + in excess O2 indicate that no complexes involving molecular oxygen are formed. However, the strong silver cluster UV-visible absorptions detected in Ar matrices disappear in the oxygen matrices, suggesting that silver-oxygen complexes are formed with dissociated oxygen.  相似文献   

9.
Photoluminescence investigations of the Ag ion-exchanged ZSM-5 (Ag+ /ZSM-5) zeolite revealed that a Ag ion cluster (Agn m +) exists in the pore structure of ZSM-5 exhibiting photoluminesm cence at 380 nm upon excitation at 332 nm. UV irradiation ( = 285 nm) of Ag+ /ZSM-5 at 77 K leads to the transformation of Agn m + into a different Ag ion cluster (Agm (n-1)+) which exhibits photoluminescence at 465 nm upon excitation at 315 nm. This photo-transformation of the Ag ion clusters was found to be thermally reversible under vacuum. It was demonstrated that an electron transfer from the photo-excited Al3+ -O2- to Agn m + plays a significant role in this process. In the presence of oxygen, UV irradiation of Ag+ /ZSM-5 leads to the formation of O2- instead of an Ag ion cluster (Agm (n-1)+), suggesting that oxygen acts as an efficient electron scavenger, which interferes with the electron capture of Agn m + under UV irradiation at 285 nm.  相似文献   

10.
A simple spectrophotometric assay of H2O2 and glucose using Ag nanoparticles has been carried out. Relying on the synergistic effect of H2O2 reduction and ultraviolet (UV) irradiation, Ag nanoparticles with enhanced absorption signals were synthesized. H2O2 served as a reducing agent in the Ag nanoparticles formation in which Ag+ was reduced to Ago by O2- generated via the decomposition of H2O2 in alkaline media. On the other hand, photoreduction of Ag+ to Ago under UV irradiations also contributed to the nanoparticles formation. The synthesized nanoparticles were characterized by TEM, XPS, and XRD. The proposed method could determine H2O2 with concentrations ranging from 5.0× 10^-7 to 6.0× 10^-5 tool/ L The detection limit was estimated to be 2.0 × 10^-7 mol/L. Since the conversion of glucose to gluconic acid catalyzed by glucose oxidase was companied with the formation of H2O2, the sensing protocol has been successfully utilized for the determination of glucose in human blood samples. The results were in good agreement with those determined by a local hospital. This colorimetric sensor thus holds great promises in clinical applications.  相似文献   

11.
The addition of hydrogen in the reaction atmosphere is effective in promoting the activity of Ag/alumina and Ag-zeolites on the selective reduction of NO by hydrocarbons (HC-SCR) at low temperatures. The increment of NO conversion over Ag-MFI corresponds to the periodic addition of hydrogen into C3H8-SCR conditions. The UV–VIS spectra of Ag-MFI have revealed that the addition of hydrogen results in the formation of Agnδ+ clusters due to partial reduction and agglomeration of Ag species. The coincidence of the formation of the Agnδ+ clusters and the increment of NO conversion suggests that Agnδ+ clusters are the highly active species for HC-SCR. From analysis by H2-TPR, UV–VIS, and EXAFS, the structure of Agnδ+ clusters on Ag-MFI is identified as being Ag42+ on average. The formation of Ag clusters was strongly affected by the type of zeolites: The major Ag species are Ag+ ions for MOR, Agnδ+ clusters for MFI and BEA, and relatively large metallic Agmparticles for Y. The sequence of Ag agglomeration (MOR < MFI < BEA < Y) is in accordance with the strength of the acid sites of zeolites. It can be expected that the interaction between the positive charge of Agnδ+ clusters and acid sites, i.e., the ion-exchange site of zeolites, stabilizes Agnδ+ clusters. The type of Ag species under HC-SCR conditions depends on the concentration of gas-phase oxidants (NO, O2) and reductants (H2, HC), and also on the number and strength of the zeolite acid sites.  相似文献   

12.
The in situ 18F-γ-ray irradiation of SiO2 nanoparticles in an aqueous solution containing Ag+ led to the reduction of Ag+ to Ag0 aggregates or Ag0 nanoparticles in a small volume (0.1 ml) under air. 18F was used in the form of 18F-fluorodeoxyglucose, produced by a cyclotron at our University hospital. The in situ average absorbed dose at the distance of 1 µm in the solution volume (0.1 ml) was calculated to be 12.2 kGy equivalent to a point source of 20 MBq. The SiO2 nanoparticles had two effects; they enhanced the reduction of Ag+ to Ag0 aggregates and they acted as reaction sites to prevent aggregation. When Ag+ adsorbed on the surface of the SiO2 nanoparticles, Ag nanoparticles were formed by 18F γ-rays. The absorption spectra of Ag nanoparticles and Ag0 aggregates were markedly different.  相似文献   

13.
The synthesis of Naumann's AgI/AgIII mixed valence salt [AgI]+[AgIII(CF3)4] ( Ag-1 ) is revisited. Ag-1 is now safely available in half gram scale upon 2e oxidation of AgF in presence of CF3SiMe3 and ambient air. In addition to its unprecedented crystallographic characterization, the use of Ag-1 to build the novel AgI/AgIII salts [ Ag (bpy)2] -1 , [ Ag (18-crown-6)2] -1 , [ Ag -crypt-222] -1 and [ Ag (PCy3)2] -1 is herein reported, alongside their characterization by NMR, single crystal X-ray diffraction (Sc-XRD) and elemental analysis (EA). The utility of the currently affordable Ag-1 in gold(I) catalysis was demonstrated by the excellent catalytic activity displayed by [{ Au (PPh3)}2(μ-Cl)] -1 and [ Au (PPh3)] -1 in the 5-exo-dig cyclization of N-propargylbenzamide ( 2 ). These cationic AuI catalysts are accessible from (PPh3)AuCl and Ag-1 , and outperform the activity of the well-known benchmark catalyst (PPh3)AuNTf2.  相似文献   

14.
The previously measured relative cross section function for electron impact ionization (EII) of neutral Ag2 has now been calibrated quantitatively by combining the electron impact ionization with in situ non resonant two photon ionization (NR2PI). By comparing the NR2PI saturation intensities measured for Ag 2 + and Ag+ with the corresponding EII intensities, the ratio between the electron impact ionization cross sections (EIICS) of neutral Ag2 and Ag was determined to be σAg2Ag=1.53 for an electron energy of 46 eV. This result agrees well with the geometricn 2/3-rule \((\sigma X_n \sim n^{2/3} )\) commonly proposed for the dependence of the EIICS of clustersX n on the cluster sizen.  相似文献   

15.
The electrochemical behaviour of the Ag(Hg)/Ag4RbI5 interface is investigated by a potentiostatic pulse method. It is found that the rate-determining step of the electrode reaction is electron transfer with an exchange current density of 68 mA cm–2 and a transfer coefficient of approximately 0.45. The order of the electrochemical reaction for silver oxidation is estimated from polarization investigations of silver amalgam in various concentrations. From this it is deduced that the mercury is ionized and is implanted in the electrolyte together with silver under anodic polarization: 15Ag+85Hg–100e→15Ag++85Hg+. From comparison of the electrochemical behaviour of the Ag(Hg)/Ag4RbI5 and Ag/Ag4RbI5 interfaces it is concluded that the rate of anodic silver dissolution on the Ag/Ag4RbI5 interface is limited by crystallization effects. Electronic Publication  相似文献   

16.
The reactions between five ferrocenyl derivatives containing both a CO and at least an imidazole or pyridine nitrogen atom and AgPF6, AgOTf, or [Cu(NCCH3)4]PF6 precursors were studied. The ligand {[bis(2-pyridyl)amino]carbonyl}ferrocene (L3), derived from (2-pyridyl)amine, favored tetrahedral coordination of Ag+ (with two ligands) and of Cu+ (with two acetonitrile ligands left from the precursor). In all the other ligands, both metal centers coordinated linearly to two ligands, preferring the imidazole or pyridinic nitrogen to other nitrogen atoms (amine) or oxygen donors.When the counter anions were triflate, the crystal structure showed a dimerization of the complex, with the ferrocenyl moieties occupying cis positions, by means of a weak Ag?Ag interaction. This was shown experimentally in the crystal structure of complex [Ag(L1)2]OTf (L1 = ferrocenyl imidazole) and in the presence of peaks corresponding to {Ag2(L2)3(OTf)}+ and {Ag2(L2)4(OTf)}+ in the mass spectra of [Ag(L2)2]OTf (L2 = ferrocenyl benzimidazole). In all complexes containing PF6, there was no evidence for dimerization. Indeed, in the crystal structure of [Ag(L2)2]PF6, the ferrocenyl moieties occupy trans positions and the metal centers are far from each other. DFT calculations showed that the energy of the cis and trans conformers is practically the same and the balance of crystal packing forces leads to dimerization when triflate is present.  相似文献   

17.
Density functional theory (PBE with a modified Dirac-Coulomb-Breit Hamiltonian) is used to simulate the adsorption of hydrocarbons (C2H2, C2H4, C2H6) on the surface of a sorbent containing Ag0, Agδ+, and AgO sites. The dynamics of change in the structural characteristics of Ag n (n ≤ 10) is analyzed and the adsorption of oxygen on Ag8 and Ag10 is studied to select the adsorption site model. Studying the interaction of hydrocarbons with Ag8, Ag10, Ag 10 + , Ag10O, and Ag10O2 clusters reveals that the presence of oxygen leads to an increase in the activation of unsaturated hydrocarbons, and the adsorption energy of C2H2 increases tenfold. It is found that the role of adsorbed oxygen is not only to form adsorption sites of hydrocarbons (Agδ+) but also to bind C2H2 and C2H4 directly to the sorbent’s surface.  相似文献   

18.
Vanadium–silver bimetallic oxide cluster ions (VxAgyOz+; x=1–4, y=1–4, z=3–11) are produced by laser ablation and reacted with ethane in a fast‐flow reactor. A reflectron time of flight (Re‐TOF) mass spectrometer is used to detect the cluster distribution before and after the reactions. Hydrogen atom abstraction (HAA) reactions are identified over VAgO3+, V2Ag2O6+, V2Ag4O7+, V3AgO8+, V3Ag3O9+, and V4Ag2O11+ ions, in which the oxygen‐centered radicals terminally bonded on V atoms are active sites for the facile HAA reactions. DFT calculations are performed to study the structures, bonding, and reactivity. The reaction mechanisms of V2Ag2O6++C2H6 are also given. The doped Ag atoms with a valence state of +1 are highly dispersed at the periphery of the VxAgyOz+ cluster ions. The reactivity can be well‐tuned gradually by controlling the number of Ag atoms. The steric protection due to the peripherally bonded Ag atoms greatly enhances the selectivity of the V–Ag bimetallic oxide clusters with respect to the corresponding pure vanadium oxide systems.  相似文献   

19.
This paper presents a study of Sb2O3 subjected to oxygen plasma and to ion beam bombardment (Ar+ and O2+ ions of 4 keV) by x‐ray photoelectron and reflected electron energy‐loss spectroscopies. Changes in stoichiometry (i.e O/Sb ratio) and oxidation state of Sb have been detected and correlated with the chemical and ballistic effects of the beams used for alteration of the Sb2O3 surface. Thus, oxygen plasma treatments lead to a significant oxidation of the surface layers of this material with the formation of up to 51% Sb5+ species as found by Sb 4d curve‐fitting analysis. By contrast, O2+ ion bombardment only produces a mild oxidation of the target with the formation of ~13% Sb5+ species. Argon ion bombardment induces a complex process where Sb5+ and Sb0 species are formed simultaneously. This result has been discussed in terms of a disproportionation reaction of the type Sb3+ → Sb5+ + Sb0. The changes in the electronic properties of the treated material are consistent with the loss upon oxidation to Sb5+ of the valence states associated to the 5s2 electron pair of antimony. Approximate shapes of valence bands for Sb2O3 and Sb2O5 pure compounds have been extracted by applying factor analysis to valence band spectra of Sb2O3 subjected to different ion and plasma treatments. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

20.
Silver nanoparticles (Ag NPs) were prepared by a green synthesis process, using Trichodesma indicum (T. indicum) leaf extract at different (5, 10 and 15 mL) concentrations. The formation of Ag NPs was confirmed by UV–Vis spectrophotometry with surface plasmon resonance at 443 nm. After this confirmation, the influence of leaf extract concentrations on the structural and surface morphological properties was studied. Along with their physical properties, antibacterial activity against pathogenic (B. cereus and E. coli) bacteria and photocatalytic de-colorization of methylene blue (MB) were examined. The XRD studies revealed that all the nanoparticles exhibited preferential orientation along the (111) plane of silver. The crystallite size decreases as the extract concentration is increased. From SEM images, it was found that the particles are spherical in shape and the size of the particles decreased drastically when the leaf extracts concentration is greater than 10 mL. The images strongly support the result observed from the SEM studies. FT-IR analysis showed that the plant compounds are involved in the reduction of Ag+ ions to Ag0. Ag NPs synthesized in 15 mL of leaf extract greatly resist the growth of both species and decomposed 82% of MB within 210 min. This ability of Ag NPs can be due to the small spherical-shaped particles and larger Ag+ ion release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号