首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We study new series of the form $\sum\nolimits_{k = 0}^\infty {f_k^{ - 1} \hat P_k^{ - 1} (x)} $ in which the general term $f_k^{ - 1} \hat P_k^{ - 1} (x)$ , k = 0, 1, …, is obtained by passing to the limit as α→?1 from the general term $\hat f_k^\alpha \hat P_k^{\alpha ,\alpha } (x)$ of the Fourier series $\sum\nolimits_{k = 0}^\infty {f_k^\alpha \hat P_k^{\alpha ,\alpha } (x)} $ in Jacobi ultraspherical polynomials $\hat P_k^{\alpha ,\alpha } (x)$ generating, for α> ?1, an orthonormal system with weight (1 ? x 2)α on [?1, 1]. We study the properties of the partial sums $S_n^{ - 1} (f,x) = \sum\nolimits_{k = 0}^n {f_k^{ - 1} \hat P_k^{ - 1} (x)} $ of the limit ultraspherical series $\sum\nolimits_{k = 0}^\infty {f_k^{ - 1} \hat P_k^{ - 1} (x)} $ . In particular, it is shown that the operator S n ?1 (f) = S n ?1 (f, x) is the projection onto the subspace of algebraic polynomials p n = p n (x) of degree at most n, i.e., S n (p n ) = p n ; in addition, S n ?1 (f, x) coincides with f(x) at the endpoints ±1, i.e., S n ?1 (f,±1) = f(±1). It is proved that the Lebesgue function Λ n (x) of the partial sums S n ?1 (f, x) is of the order of growth equal to O(ln n), and, more precisely, it is proved that $\Lambda _n (x) \leqslant c(1 + \ln (1 + n\sqrt {1 - x^2 } )), - 1 \leqslant x \leqslant 1$ .  相似文献   

2.
We prove formulas for SK1(E, τ), which is the unitary SK1 for a graded division algebra E finite-dimensional and semiramified over its center T with respect to a unitary involution τ on E. Every such formula yields a corresponding formula for SK1(D, ρ) where D is a division algebra tame and semiramified over a Henselian valued field and ρ is a unitary involution on D. For example, it is shown that if ${\sf{E} \sim \sf{I}_0 \otimes_{\sf{T}_0}\sf{N}}$ where I 0 is a central simple T 0-algebra split by N 0 and N is decomposably semiramified with ${\sf{N}_0 \cong L_1\otimes_{\sf{T}_0} L_2}$ with L 1, L 2 fields each cyclic Galois over T 0, then $${\rm SK}_1(\sf{E}, \tau) \,\cong\ {\rm Br}(({L_1}\otimes_{\sf{T}_0} {L_2})/\sf{T}_0;\sf{T}_0^\tau)\big/ \left[{\rm Br}({L_1}/\sf{T}_0;\sf{T}_0^\tau)\cdot {\rm Br}({L_2}/\sf{T}_0;\sf{T}_0^\tau) \cdot \langle[\sf{I}_0]\rangle\right].$$   相似文献   

3.
Оператор Канторович а дляf∈L p(I), I=[0,1], определяе тся соотношением $$P_n (f,x) = (n + 1)\sum\limits_{k = 0}^n {\left( {\begin{array}{*{20}c} n \\ k \\ \end{array} } \right)} x^k (1 - x)^{n - 1} \int\limits_{I_k } {f(t)dt,} $$ гдеI k=[k/(n}+1),(k+1)/(n+ 1)],n∈N. Доказывается, что есл ир>1 иfW p 2 (I), т.е.f абсол ютно непрерывна наI иf″∈L p(I), то $$\left\| {P_n f - f} \right\|_p = O(n^{ - 1} ).$$ Далее, установлено, чт о еслиfL p(I),p>1 и ∥P n f-fр=О(n ?1), тоf∈S, гдеS={ff аб-солютно непрерывна наI, x(1?x)f′(x)=∝ 0 x h(t)dt, гдеh∈L p(I) и ∝ 0 1 h(t)dt=0}. Если жеf∈Lp(I),p>1, то из условия ∥P n(f)?fpL=o(n?1) вытекает, чтоf постоянна почти всюду.  相似文献   

4.
Let C(Q) denote the space of continuous functions f(x, y) in the square Q = [?1, 1] × [?1, 1] with the norm $\begin{gathered} \left\| f \right\| = \max \left| {f(x,y)} \right|, \hfill \\ (x,y) \in Q. \hfill \\ \end{gathered} $ On a Chebyshev grid, a cubature formula of the form $\int\limits_{ - 1}^1 {\int\limits_{ - 1}^1 {\frac{1} {{\sqrt {(1 - x^2 )(1 - y^2 )} }}f(x,y)dxdy = \frac{{\pi ^2 }} {{mn}}\sum\limits_{i = 1}^n {\sum\limits_{j = 1}^m {f\left( {\cos \frac{{2i - 1}} {{2n}}\pi ,\cos \frac{{2j - 1}} {{2m}}\pi } \right)} + R_{m,n} (f)} } } $ is considered in some class H(r 1, r 2) of functions f ?? C(Q) defined by a generalized shift operator. The remainder R m, n (f) is proved to satisfy the estimate $\mathop {\sup }\limits_{f \in H(r_1 ,r_2 )} \left| {R_{m,n} (f)} \right| = O(n^{ - r_1 + 1} + m^{ - r_2 + 1} ), $ where r 1, r 2 > 1; ???1 ?? n/m ?? ?? with ?? > 0; and the constant in O(1) depends on ??.  相似文献   

5.
For a cubature formula of the form $$\int\limits_0^{2\pi } {\int\limits_0^{2\pi } {f(x,y)dxdy = \frac{{4\pi ^2 }} {{mn}}\sum\limits_{i = 0}^{n - 1} {\sum\limits_{j = 0}^{m - 1} {f\left( {\frac{{2\pi i}} {n},\frac{{2\pi j}} {m}} \right) + R_{n,m} (f)} } } }$$ on a Chebyshev grid, the remainder R n,m (f) is proved to satisfy the sharp estimate $$\mathop {\sup }\limits_{f \in H\left( {r_1 ,r_2 } \right)} \left| {R_{n,m} (f)} \right| = O\left( {n^{ - r_1 + 1} + m^{ - r_1 + 1} } \right)$$ in some class of functions H(r 1, r 2) defined by a generalized shift operator. Here, r 1, r 2 > 1; ???1 ?? n/m ?? ?? with ?? > 0; and the constant in the O-term depends only on ??.  相似文献   

6.
This paper is concerned with the property of cosine function. It is proved that a family {T(t)} t≥0 of strongly continuous linear operators is a cosine function on Banach space X if and only if T(0)=I and there holds $$\begin{aligned} \int_0^{t+s}T(\tau)d\tau=T(t)\int _0^s T(\tau)d\tau+\int_0^t T(\tau)d\tau T(s),\quad t,s \geq0, \end{aligned}$$ where all the integrals concerning operator valued functions are understood to be in the strong operator topology.  相似文献   

7.
Let F be a totally real number field of degree n over $\mathbb{Q}$ with ring of integers $\mathcal{O}$ and narrow class number one. Let S 2k (Γ) be the vector space of cuspidal Hilbert modular forms of parallel weight 2k for $\varGamma=\mathrm{SL}_{2}(\mathcal{O})$ , and let B 2k be an orthogonal Hecke eigenbasis for this space. For any fixed Hecke eigenform fS 2k (Γ) and any ε>0, we prove that $$\# \biggl\{ g \in B_{2k}: L \biggl(f \times g, \frac{1}{2} \biggr) \ne0 \biggr\} \gg k^{n- \varepsilon}, $$ where L(f×g,s) is the Rankin–Selberg L–function of f and g.  相似文献   

8.
Given a finite intervalI?R, a characterization is given for those discrete sets of real numbers Λ and associated sequences {c λ}λ∈Λ, withc λ>0, having the properties that every functionfL 2(I) can be expanded inL 2(I) as the unconditionally convergent series $$f = \sum\limits_{\lambda \in \Lambda } {\hat f} (\lambda )c_\lambda e^{2\pi i\lambda x} $$ and that the range of the mappingL 2(I)→L μ 2 :ff has finite codimension inL μ 2 , iff denotes the Fourier transform off and μ is the measure μ = ∑λ∈Λ c λ δλ.  相似文献   

9.
Let S 0 = 0, {S n n ≥ 1} be a random walk generated by a sequence of i.i.d. random variables X 1, X 2, . . . and let $\tau ^{-}={\rm min} \{ n \geq 1:S_{n}\leq 0 \}$ and $\tau ^{+}={\rm min}\{n\geq1:S_{n} > 0\} $ . Assuming that the distribution of X 1 belongs to the domain of attraction of an α-stable law we study the asymptotic behavior, as ${n\rightarrow \infty }$ , of the local probabilities ${\bf P}{(\tau ^{\pm }=n)}$ and prove the Gnedenko and Stone type conditional local limit theorems for the probabilities ${\bf P}{(S_{n} \in [x,x+\Delta )|\tau^{-} > n)}$ with fixed Δ and ${x=x(n)\in (0,\infty )}$ .  相似文献   

10.
We consider nonautonomous semilinear evolution equations of the form $$\frac{dx}{dt}= A(t)x+f(t,x) . $$ Here A(t) is a (possibly unbounded) linear operator acting on a real or complex Banach space $\mathbb{X}$ and $f: \mathbb{R}\times\mathbb {X}\to\mathbb{X}$ is a (possibly nonlinear) continuous function. We assume that the linear equation (1) is well-posed (i.e. there exists a continuous linear evolution family {U(t,s)}(t,s)∈Δ such that for every s∈?+ and xD(A(s)), the function x(t)=U(t,s)x is the uniquely determined solution of Eq. (1) satisfying x(s)=x). Then we can consider the mild solution of the semilinear equation (2) (defined on some interval [s,s+δ),δ>0) as being the solution of the integral equation $$x(t) = U(t, s)x + \int_s^t U(t, \tau)f\bigl(\tau, x(\tau)\bigr) d\tau,\quad t\geq s . $$ Furthermore, if we assume also that the nonlinear function f(t,x) is jointly continuous with respect to t and x and Lipschitz continuous with respect to x (uniformly in t∈?+, and f(t,0)=0 for all t∈?+) we can generate a (nonlinear) evolution family {X(t,s)}(t,s)∈Δ , in the sense that the map $t\mapsto X(t,s)x:[s,\infty)\to\mathbb{X}$ is the unique solution of Eq. (4), for every $x\in\mathbb{X}$ and s∈?+. Considering the Green’s operator $(\mathbb{G}{f})(t)=\int_{0}^{t} X(t,s)f(s)ds$ we prove that if the following conditions hold
  • the map $\mathbb{G}{f}$ lies in $L^{q}(\mathbb{R}_{+},\mathbb{X})$ for all $f\in L^{p}(\mathbb{R}_{+},\mathbb{X})$ , and
  • $\mathbb{G}:L^{p}(\mathbb{R}_{+},\mathbb{X})\to L^{q}(\mathbb {R}_{+},\mathbb{X})$ is Lipschitz continuous, i.e. there exists K>0 such that $$\|\mathbb{G} {f}-\mathbb{G} {g}\|_{q} \leq K\|f-g\|_{p} , \quad\mbox{for all}\ f,g\in L^p(\mathbb{R}_+,\mathbb{X}) , $$
then the above mild solution will have an exponential decay.  相似文献   

11.
We consider boundary value problems for nonlinear 2mth-order eigenvalue problem $$ \begin{gathered} ( - 1)^m u^{(2m)} (t) = \lambda a(t)f(u(t)),0 < t < 1, \hfill \\ u^{(2i)} (0) = u^{(2i)} (1) = 0,i = 0,1,2,...,m - 1. \hfill \\ \end{gathered} $$ . where aC([0, 1], [0, ∞)) and a(t 0) > 0 for some t 0 ∈ [0, 1], fC([0, ∞), [0, ∞)) and f(s) > 0 for s > 0, and f 0 = ∞, where $ \mathop {\lim }\limits_{s \to 0^ + } f(s)/s $ . We investigate the global structure of positive solutions by using Rabinowitz’s global bifurcation theorem.  相似文献   

12.
Let \(f(z) = \sum\limits_{h = 0}^\infty {f_h z^h } \) be a power series with positive radius of convergenceR f ≤1,f h algebraic and lacunary in the following sense: Let {r n }, {s n } be two infinite sequences of integers, satisfying $$0 = s_0 \leqslant r_1< s_1 \leqslant r_2< s_2 \leqslant r_3< s_3 \leqslant ..., \mathop {lim}\limits_{n \to \infty } (s_n /F(n)) = \infty $$ such that $$f_h = 0 if r_n< h< s_n ,f_{r_n } \ne 0,f_{s_n } \ne 0 for n = 1,2,3,...;$$ F(n) denotes a certain function ofn, dependent onr n and \(f_0 ,f_1 ,f_2 , \ldots f_{r_n } \) . Using ideas from a note ofK. Mahler, among other results the following main theorem is proved: The function valuef(α) (with α algebraic, 0<|α|<R f ) is algebraic if and only if there exists a positive integerN=N(α) such that $$P_n (\alpha ): = \sum\limits_{h = s_n }^{r_{n + 1} } {f_h \alpha ^h = 0 for all n \geqslant N.} $$   相似文献   

13.
Let Sk0(N)Ψ) be the space of holomorphic Γ0(N)-cusp forms of integral weight k and of character Ψ(mod n), let f(z) be a newform of the space Sk0(N),Ψ), and let Lf(s) be the corresponding L-function. The following statements are proved. (1) Let $\mathcal{F}_0 $ be the set of all newforms of Sk0(p),1), let p be prime, and let k≥2 be a constant even number. Then $\sum\limits_{f \in \mathcal{F}_0 :L_f (k/2) \ne 0} {1 \gg \frac{p}{{\log ^2 p}}} {\text{ (}}p \to \infty ).$ (2) Let $\mathcal{F}_0 $ be the set of all Hecke eigenforms of the space Sk0(1),1) and let k≡0 (mod 4). Then $\sum\limits_{f \in \mathcal{F}_0 :L_f (k/2) \ne 0} {1 \gg \frac{k}{{\log ^2 p}}} {\text{ (}}k \to \infty ).$ Bibliography: 11 titles.  相似文献   

14.
15.
Let R(+, ·) be a nilpotent ring and $ \left( {\mathfrak{M}, < } \right) $ be the lattice of all ring topologies on R(+, ·) or the lattice of all such ring topologies on R(+, ·) in each of which the ring R possesses a basis of neighborhoods of zero consisting of subgroups. Let ?? and ??? be ring topologies from $ \mathfrak{M} $ such that $ \tau = {\tau_0}{ \prec_\mathfrak{M}}{\tau_1}{ \prec_\mathfrak{M}} \cdots { \prec_\mathfrak{M}}{\tau_n} = \tau ^{\prime} $ . Then k????n for every chain $ \tau = {\tau ^{\prime}_0} < {\tau ^{\prime}_1} < \cdots < {\tau ^{\prime}_k} = \tau ^{\prime} $ of topologies from $ \mathfrak{M} $ , and also n?=?k if and only if $ {\tau ^{\prime}_i}{ \prec_\mathfrak{M}}{\tau ^{\prime}_{i + 1}} $ for all 0????i?<?k.  相似文献   

16.
The following result is established. Letf be a bounded function on theN-dimensional torus, andV a polyhedron in R N . Denote byS nV (f) the partial sum of ordern of the Fourier series off that is generated byV. Letp∈[1, ∞). Under some natural assumptions on?V, for every convex sequence {n j } of integers satisfying $$\log n_j \leqq Cj^{min (1/2N,1/pN)} , C > 0,$$ the following inequality is true: $$\frac{1}{m}\sum\limits_{j = 1}^m {|S_{n_j V} (f,0)|^p \leqq C_1 \parallel f\parallel _\infty ^p , m = 1,2, \ldots ; C_1 = C_1 (p, N, V) > 0.} $$   相似文献   

17.
Iff∈C[?1, 1] is real-valued, letE R mn (f) andE C mn (f) be the errors in best approximation tof in the supremum norm by rational functions of type (m, n) with real and complex coefficients, respectively. We show that formn?1≥0 $$\gamma _{mn} = \inf \{ {{E_{mn}^C (f)} \mathord{\left/ {\vphantom {{E_{mn}^C (f)} {E_{mn}^R (f)}}} \right. \kern-\nulldelimiterspace} {E_{mn}^R (f)}}:f \in C[ - 1,1]\} = \tfrac{1}{2}.$$   相似文献   

18.
In this paper,a uniqueness theorem for meromorphic mappings partially sharing 2N+3 hyperplanes is proved.For a meromorphic mapping f and a hyperplane H,set E(H,f) = {z|ν(f,H)(z) 0}.Let f and g be two linearly non-degenerate meromorphic mappings and {Hj}j2=N1+ 3be 2N + 3 hyperplanes in general position such that dim f-1(Hi) ∩ f-1(Hj) n-2 for i = j.Assume that E(Hj,f) E(Hj,g) for each j with 1 j 2N +3 and f = g on j2=N1+ 3f-1(Hj).If liminfr→+∞ 2j=N1+ 3N(1f,Hj)(r) j2=N1+ 3N(1g,Hj)(r) NN+1,then f ≡ g.  相似文献   

19.
We investigate the approximation of functions by Bernstein polynomials. We prove that (1) $$^\tau [0,1]^{(f,B_n (f))} \leqslant \mu _f \left( {4\sqrt {\tfrac{{\ln n}}{n}} } \right) + \left( {4\sqrt {\tfrac{{\ln n}}{n}} } \right),$$ where r[0,1](f, Bn(f)) is the Hausdorff distance between the functionsf(x) and Bn(f; x) in [0,1], is the modulus of nonmonotonicity off(x). The bound (1) is of better order than that obtained by Sendov. We show that the order of (1) cannot be improved.  相似文献   

20.
Л. Лейндлер поставил з адачу о том, следует ли при 0<р<1 из условия $$\mathop {\max }\limits_x \sum\limits_{k = 0}^\infty {\left| {S_k (x) - f(x)} \right|^p< \infty } $$ принадлежность функ цииf классу Lip 1 (здесьS k (x) — сумма Фурье порядкаk функц ииf). В работе дан положите льный ответ на этот во прос. Рассматриваются так же различные обобщен ия этой задачи.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号