首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
For the functional differential equationu (n) (t)=f(u)(t) we have established the sufficient conditions for solvability and unique solvability of the boundary value problems $$u^{(i)} (0) = c_i (i = 0,...,m - 1), \smallint _0^{ + \infty } |u^{(m)} (t)|^2 dt< + \infty $$ and $$\begin{gathered} u^{(i)} (0) = c_i (i = 0),...,m - 1, \hfill \\ \smallint _0^{ + \infty } t^{2j} |u^{(j)} (t)|^2 dt< + \infty (j = 0,...,m), \hfill \\ \end{gathered} $$ wheren≥2,m is the integer part of $\tfrac{n}{2}$ ,c i R, andf is the continuous operator acting from the space of (n?1)-times continuously differentiable functions given on an interval [0,+∞] into the space of locally Lebesgue integrable functions.  相似文献   

2.
The modified Bernstein-Durrmeyer operators discussed in this paper are given byM_nf≡M_n(f,x)=(n+2)P_(n,k)∫_0~1p_n+1.k(t)f(t)dt,whereWe will show,for 0<α<1 and 1≤p≤∞  相似文献   

3.
ДОкАжАНО, ЧтО Дль тОгО, ЧтОБы Дльr РАж ДИФФЕРЕНцИРУЕМОИ НА пРОМЕжУткЕ [А, + ∞) ФУНкцИИf сУЩЕстВОВА л тАкОИ МНОгОЧлЕН (1) $$P(x) = \mathop \Sigma \limits_{\kappa = 0}^{r - 1} a_k x^k ,$$ , ЧтО (2) $$\mathop {\lim }\limits_{x \to + \infty } (f(x) - P(x))^{(k)} = 0,k = 0,1,...,r - 1,$$ , НЕОБхОДИМО И ДОстАтО ЧНО, ЧтОБы схОДИлсь ИН тЕгРАл (3) $$\int\limits_a^{ + \infty } {dt_1 } \int\limits_{t_1 }^{ + \infty } {dt_2 ...} \int\limits_{t_{r - 1} }^{ + \infty } {f^{(r)} (t)dt.}$$ ЕслИ ЁтОт ИНтЕгРАл сх ОДИтсь, тО Дль кОЁФФИц ИЕНтОВ МНОгОЧлЕНА (1) ИМЕУт МЕс тО ФОРМУлы $$\begin{gathered} a_{r - m} = \frac{1}{{(r - m)!}}\left( {\mathop \Sigma \limits_{j = 1}^m \frac{{( - 1)^{m - j} f^{(r - j)} (x_0 )}}{{(m - j)!}}} \right.x_0^{m - j} + \hfill \\ + ( - 1)^{m - 1} \left. {\mathop \Sigma \limits_{l = 0}^{m - 1} \frac{{x_0^l }}{{l!}}\int\limits_a^{ + \infty } {dt_1 } \int\limits_{t_1 }^{ + \infty } {dt_2 ...} \int\limits_{t_{m - l - 1} }^{ + \infty } {f^{(r)} (t_{m - 1} )dt_{m - 1} } } \right),m = 1,2,...,r. \hfill \\ \end{gathered}$$ ДОстАтОЧНыМ, НО НЕ НЕОБхОДИМыМ Усл ОВИЕМ схОДИМОстИ кРА тНОгО ИНтЕгРАлА (3) ьВльЕтсь схОДИМОсть ИНтЕгРАл А \(\int\limits_a^{ + \infty } {x^{r - 1} f^{(r)} (x)dx}\)   相似文献   

4.
This paper is a continuation of [3]. Suppose f∈Hp(T), 0σ r σ f,σ=1/p?1. When p=1, it is just the partial Fourier sums Skf. In this paper we establish the sharp estimations on the degree of approximation: $$\left\{ { - \frac{1}{{logR}}\int\limits_1^R {\left\| {\sigma _r^\delta f - f} \right\|_{H^p (T)}^p \frac{{dr}}{r}} } \right\}^{1/p} \leqq C{\mathbf{ }}{}_p\omega \left( {f,{\mathbf{ }}( - \frac{1}{{logR}})^{1/p} } \right)_{H^p (T)} ,0< p< 1,$$ and \(\frac{1}{{\log L}}\sum\limits_{k - 1}^L {\frac{{\left\| {S_k f - f} \right\|_H 1_{(T)} }}{k} \leqq Cp\omega (f; - \frac{1}{{\log L}})_H 1_{(T)} } \) Where $$\omega (f,{\mathbf{ }}h)_{H^p (T)} \begin{array}{*{20}c} { = Sup} \\ {0 \leqq \left| u \right| \leqq h} \\ \end{array} \left\| {f( \cdot + u) - f( \cdot )} \right\|_{H^p (T).} $$ .  相似文献   

5.
In this paper we consider the problem $\begin{gathered} y^{iv} + p_2 (x)y'' + p_1 (x)y' + p_0 (x)y = \lambda y,0 < x < 1, \hfill \\ y^{(s)} (1) - ( - 1)^\sigma y^{(s)} (0) + \sum\limits_{l = 0}^{s - 1} {\alpha _{s,l} y^{(l)} (0) = 0,} s = 1,2,3, \hfill \\ y(1) - ( - 1)^\sigma y(0) = 0, \hfill \\ \end{gathered} $ where λ is a spectral parameter; p j (x) ∈ L 1(0, 1), j = 0, 1, 2, are complex-valued functions; α s;l , s = 1, 2, 3, $l = \overline {0,s - 1} $ , are arbitrary complex constants; and σ = 0, 1. The boundary conditions of this problem are regular, but not strongly regular. Asymptotic formulae for eigenvalues and eigenfunctions of the considered boundary value problem are established in the case α 3,2 + α 1,0α 2,1. It is proved that the system of root functions of this spectral problem forms a basis in the space L p (0, 1), 1 < p < ∞, when α 3,2+α 1,0α 2,1, p j (x) ∈ W 1 j (0, 1), j = 1, 2, and p 0(x) ∈ L 1(0, 1); moreover, this basis is unconditional for p = 2.  相似文献   

6.
Пусть Tn(f)={L1(f), ..., Ln(f)} — набор линейных функционал ов, заданных на простран стве \(C_{(r - 1)} (\parallel f\parallel _{C_{(r - 1)} } = \mathop {\max }\limits_{0 \leqq i \leqq r - 1} \parallel f^{(i)} \parallel _C );A_{n,r}\) — множество всех так их наборов функцио налов; С2n, 2 — множество всех н аборов из 2n функциона лов вида $$T_{2n} (f) = \{ f(x_1 ), \ldots ,f(x_n ),f'(x_1 ), \ldots ,f'(x_n )\}$$ и s: Еn→Е1. Доказано, что е слиW r множество всех 2π-периодических функ цийfεW∞0, 2πr, то приr=1,2,3,... ирε(1, ∞) и $$\begin{gathered} \mathop {\inf }\limits_{T_{2n} \in A_{2n,r} } \parallel \mathop {\inf }\limits_s \mathop {\sup }\limits_{f \in W_\infty ^r } |f( \cdot ) - s(T_{2n} ,f, \cdot )|\parallel _p = \parallel \varphi _{n,r} \parallel _p \hfill \\ \mathop {\inf }\limits_{T_{2n} \in C_{2n,2} } \parallel \mathop {\inf }\limits_s \mathop {\sup }\limits_{f \in W_\infty ^r } |f( \cdot ) - s(T_{2n} ,f, \cdot )|\parallel _p = \parallel \parallel \varphi _{n,r} \parallel _\infty - \varphi _{n,r} \parallel _p , \hfill \\ \end{gathered}$$ где ?n,rr-й периодичес кий интеграл, в средне м равный нулю на периоде, от фун кции ?n, 0t=sign sinnt. При этом указан ы оптимальные методы приближенного вычис ления.  相似文献   

7.
We study the rate of uniform approximation by Nörlund means of the rectangular partial sums of double Fourier series of continuous functionsf(x, y), 2π-periodic in each variable. The results are given in terms of the modulus of symmetric smoothness defined by $$\begin{gathered} \omega _2 \left( {f,\delta _1 ,\delta _2 } \right) = \mathop {\sup }\limits_{x,y} \mathop {\sup }\limits_{\left| u \right| \leqslant \delta _1 ,\left| v \right| \leqslant \delta _2 } \left| {f\left( {x + u,y + v} \right)} \right. + f\left( {x + u,y - v} \right) + f\left( {x - u,y + v} \right) \hfill \\ + \left. {f\left( {x - u,y - v} \right) + 4f\left( {x,y} \right)} \right| for \delta _1 ,\delta _2 \geqslant 0. \hfill \\ \end{gathered} $$ As a special case we obtain the rate of uniform approximation to functionsf(x,y) in Lip({α, β}), the Lipschitz class, and inZ({α, β}), the Zygmund class of ordersα andβ, 0<α,β ≤ l, as well as the rate of uniform approximation to the conjugate functions \(\tilde f^{(1,0)} (x,y), \tilde f^{(0,1)} (x,y)\) and \(\tilde f^{(1,1)} (x,y)\) .  相似文献   

8.
Let C(Q) denote the space of continuous functions f(x, y) in the square Q = [?1, 1] × [?1, 1] with the norm $\begin{gathered} \left\| f \right\| = \max \left| {f(x,y)} \right|, \hfill \\ (x,y) \in Q. \hfill \\ \end{gathered} $ On a Chebyshev grid, a cubature formula of the form $\int\limits_{ - 1}^1 {\int\limits_{ - 1}^1 {\frac{1} {{\sqrt {(1 - x^2 )(1 - y^2 )} }}f(x,y)dxdy = \frac{{\pi ^2 }} {{mn}}\sum\limits_{i = 1}^n {\sum\limits_{j = 1}^m {f\left( {\cos \frac{{2i - 1}} {{2n}}\pi ,\cos \frac{{2j - 1}} {{2m}}\pi } \right)} + R_{m,n} (f)} } } $ is considered in some class H(r 1, r 2) of functions f ?? C(Q) defined by a generalized shift operator. The remainder R m, n (f) is proved to satisfy the estimate $\mathop {\sup }\limits_{f \in H(r_1 ,r_2 )} \left| {R_{m,n} (f)} \right| = O(n^{ - r_1 + 1} + m^{ - r_2 + 1} ), $ where r 1, r 2 > 1; ???1 ?? n/m ?? ?? with ?? > 0; and the constant in O(1) depends on ??.  相似文献   

9.
It is the aim of this paper to introduce two new notions of discrepancy. They are defined by the formulas $$\begin{gathered} \Delta _N^r \left( {\omega ;f} \right) = \mathop {\sup }\limits_{\left| z \right| = r} \left| {\left( {{1 \mathord{\left/ {\vphantom {1 N}} \right. \kern-\nulldelimiterspace} N}} \right)\sum\limits_{n = 1}^N {f\left( {z e^2 \pi i\omega \left( n \right)} \right)} - f\left( 0 \right)} \right|, and \hfill \\ \delta _N^r \left( {\omega ;f} \right) = \mathop {\sup }\limits_{\left| z \right| = r} \left| {\left( {{1 \mathord{\left/ {\vphantom {1 N}} \right. \kern-\nulldelimiterspace} N}} \right)\sum\limits_{n = 1}^N {f\left( {z \omega \left( n \right)} \right)} \cdot z - \int\limits_0^z {f\left( \zeta \right)d\zeta } } \right|, \hfill \\ \end{gathered} $$ wheref is a holomorphic function defined in the unit disc withf (k) (0)≠0 for allk∈?,r<1 is a positive number, and ω is a sequence in [0, 1]. The first of these discrepancies can be generalized for multidimensional sequences. ω is uniform distributed if and only if lim N→∞ Δ N r (ω;f)=0 resp. lim N→∞δ N r (ω;f)=0. These results are proved in a quantitative way by estimating the classical discrepancyD N (ω) by means ofΔ N r (ω;f) and δ N r (ω;f): $$\begin{gathered} \Delta _N^r \left( {\omega ;f} \right) \ll D_N \left( \omega \right) \ll \Phi \left( {\Delta _N^r \left( {\omega ;f} \right)} \right), \hfill \\ \delta _N^r \left( {\omega ;f} \right) \ll D_N \left( \omega \right) \ll \Psi \left( {\delta _N^r \left( {\omega ;f} \right)} \right). \hfill \\ \end{gathered} $$ The functions Φ and Ψ only depend onf andr. These estimations are based on the inequalities ofKoksma-Hlawka andErdös-Turán.  相似文献   

10.
We consider the followingK-functional: $$K(\delta ,f)_p : = \mathop {\sup }\limits_{g \in W_{p U}^r } \left\{ {\left\| {f - g} \right\|_{L_p } + \delta \sum\limits_{j = 0}^r {\left\| {g^{(j)} } \right\|_{L_p } } } \right\}, \delta \geqslant 0,$$ where ? ∈L p :=L p [0, 1] andW p,U r is a subspace of the Sobolev spaceW p r [0, 1], 1≤p≤∞, which consists of functionsg such that $\int_0^1 {g^{(l_j )} (\tau ) d\sigma _j (\tau ) = 0, j = 1, ... , n} $ . Assume that 0≤l l ≤...≤l n r-1 and there is at least one point τ j of jump for each function σ j , and if τ j s forjs, thenl j l s . Let $\hat f(t) = f(t)$ , 0≤t≤1, let $\hat f(t) = 0$ ,t<0, and let the modulus of continuity of the functionf be given by the equality $$\hat \omega _0^{[l]} (\delta ,f)_p : = \mathop {\sup }\limits_{0 \leqslant h \leqslant \delta } \left\| {\sum\limits_{j = 0}^l {( - 1)^j \left( \begin{gathered} l \hfill \\ j \hfill \\ \end{gathered} \right)\hat f( - hj)} } \right\|_{L_p } , \delta \geqslant 0.$$ We obtain the estimates $K(\delta ^r ,f)_p \leqslant c\hat \omega _0^{[l_1 ]} (\delta ,f)_p $ and $K(\delta ^r ,f)_p \leqslant c\hat \omega _0^{[l_1 + 1]} (\delta ^\beta ,f)_p $ , where β=(pl l + 1)/p(l 1 + 1), and the constantc>0 does not depend on δ>0 and ? ∈L p . We also establish some other estimates for the consideredK-functional.  相似文献   

11.
We consider a class of planar self-affine tiles T = M-1 a∈D(T + a) generated by an expanding integral matrix M and a collinear digit set D as follows:M =(0-B 1-A),D = {(00),...,(|B|0-1)}.We give a parametrization S1 →T of the boundary of T with the following standard properties.It is H¨older continuous and associated with a sequence of simple closed polygonal approximations whose vertices lie on T and have algebraic preimages.We derive a new proof that T is homeomorphic to a disk if and only if 2|A| |B + 2|.  相似文献   

12.
В работе для неотрица тельных последовате льностей (...,a ?1 i ), aa 0 i ),a 1 i ), ...), удовлетв оряющих условию \(0< \mathop {\sup }\limits_k a_k^{(i)}< \infty\) (i=1,...,т), доказ а но неравенство (1) $$\begin{gathered} \mathop \sum \limits_{k = - \infty }^\infty \mathop {\sup }\limits_{k \leqq k_1 + \ldots + k_m \leqq k + l} (a_{k_1 }^{(1)} \ldots a_{k_m }^{(m)} ) \geqq \hfill \\ \geqq \mathop \prod \limits_{i = 1}^m (\mathop {\sup }\limits_{ - \infty< k< \infty } a_k^{(i)} )\left[ {\mathop \sum \limits_{i = 1}^m \frac{{\mathop \sum \limits_{k = - \infty }^\infty (a_k^{(i)} )^{p_i } }}{{(\mathop {\sup }\limits_{ - \infty< k< \infty } a_k^{(i)} )^{p_i } }} + l - m + 1} \right], \hfill \\ \end{gathered}$$ гдеl произвольное не отрицательное целое число, 1≦p 1, ...,p m ≦∞ и \(\mathop \sum \limits_{i = 1}^m p_i^{ - 1} = 1\) . Это неравенство явля ется обобщением и уто чнением неравенств А. Прекопа, Ш. Данча и Л. Лейндлера. Доказано также, что ес ли все последователь ности содержат только коне чное число ненулевых членов, то н еобходимым условием для равенства в (1) является существование такого числа α>0, чтоa k( i )=а илиa k( i )=0 для всехi=1,...,m;?∞<k<∞.  相似文献   

13.
We establish sufficient conditions for the solvability of boundary-value problems of the form $$\begin{gathered} u'' = f(t,u,u'); \hfill \\ \begin{array}{*{20}c} {(u(0),} & {u'(0)) \in S_0 ,} & {(u(1),} & {u'(1)) \in S_1 .} \\ \end{array} \hfill \\ \end{gathered} $$   相似文献   

14.
Let X and Y be fences of size n and m, respectively and n, m be either both even or both odd integers (i.e., |m-n| is an even integer). Let \(r = \left\lfloor {{{(n - 1)} \mathord{\left/ {\vphantom {{(n - 1)} 2}} \right. \kern-0em} 2}} \right\rfloor\) . If 1<n<-m then there are \(a_{n,m} = (m + 1)2^{n - 2} - 2(n - 1)(\begin{array}{*{20}c} {n - 2} \\ r \\ \end{array} )\) of strictly increasing mappings of X to Y. If 1<-m<-n<-2m and s=1/2(n?m) then there are a n,m+b n,m+c n of such mappings, where $$\begin{gathered} b_{n,m} = 8\sum\limits_{i = 0}^{s - 2} {\left( {\begin{array}{*{20}c} {m + 2i + 1} \\ l \\ \end{array} } \right)4^{s - 2 - 1} } \hfill \\ {\text{ }}c_n = \left\{ \begin{gathered} \left( {\begin{array}{*{20}c} {n - 1} \\ {s - 1} \\ \end{array} } \right){\text{ if both }}n,m{\text{ are even;}} \hfill \\ {\text{ 0 if both }}n,m{\text{ are odd}}{\text{.}} \hfill \\ \end{gathered} \right. \hfill \\ \end{gathered} $$   相似文献   

15.
A difference scheme is constructed for the solution of the variational equation $$\begin{gathered} a\left( {u, v} \right)---u \geqslant \left( {f, v---u} \right)\forall v \varepsilon K,K \{ vv \varepsilon W_2^2 \left( \Omega \right) \cap \mathop {W_2^1 \left( \Omega \right)}\limits^0 ,\frac{{\partial v}}{{\partial u}} \geqslant 0 a.e. on \Gamma \} ; \hfill \\ \Omega = \{ x = (x_1 ,x_2 ):0 \leqslant x_\alpha< l_\alpha ,\alpha = 1, 2\} \Gamma = \bar \Omega - \Omega ,a(u, v) = \hfill \\ = \int\limits_\Omega {\Delta u\Delta } vdx \equiv (\Delta u,\Delta v, \hfill \\ \end{gathered} $$ The following bound is obtained for this scheme: $$\left\| {y - u} \right\|_{W_2 \left( \omega \right)}^2 = 0(h^{(2k - 5)/4} )u \in W_2^k \left( \Omega \right),\left\| {y - u} \right\|_{W_2^2 \left( \omega \right)} = 0(h^{\min (k - 2;1,5)/2} ),u \in W_\infty ^k \left( \Omega \right) \cap W_2^3 \left( \Omega \right)$$ The following bounds are obtained for the mixed boundary-value problem: $$\begin{gathered} \left\| {y - u} \right\|_{W_2^2 \left( \omega \right)} = 0\left( {h^{\min \left( {k - 2;1,5} \right)} } \right),u \in W_\infty ^k \left( \Omega \right),\left\| {y - u} \right\|_{W_2^2 \left( \omega \right)} = 0\left( {h^{k - 2,5} } \right), \hfill \\ u \in W_2^k \left( \Omega \right),k \in \left[ {3,4} \right] \hfill \\ \end{gathered} $$ .  相似文献   

16.
Given aself similar fractal K ? ? n of Hausdorff dimension α>n?2, andc 1>0, we give an easy and explicit construction, using the self similarity properties ofK, of a sequence of closed sets? h such that for every bounded open setΩ?? n and for everyf ∈ L2(Ω) the solutions to $$\left\{ \begin{gathered} - \Delta u_h = f in \Omega \backslash \varepsilon _h \hfill \\ u_h = 0 on \partial (\Omega \backslash \varepsilon _h ) \hfill \\ \end{gathered} \right.$$ converge to the solution of the relaxed Dirichlet boundary value problem $$\left\{ \begin{gathered} - \Delta u + uc_1 \mathcal{H}_{\left| K \right.}^\alpha = f in \Omega \hfill \\ u = 0 on \partial \Omega \hfill \\ \end{gathered} \right.$$ (H α denotes the restriction of the α-dimensional Hausdorff measure toK). The condition α>n?2 is strict.  相似文献   

17.
The following theorem is proved, based on an irrationality measure fore a (a∈0, rational) ofP. Bundschuh: Letp, q, u, v∈0 be rational integers withq≥1,v≥1,a=u/v, 0<δ≤2. If $$\begin{gathered} q > \exp \{ u^2 ((ea)^2 /8) (1 + u^2 (a e/2)^2 ) + |u|^{8/\delta } e^{2/\delta } + (4/\delta )\log \upsilon + \hfill \\ + (2/\delta )\log 12 + |a| + \log (3 + 20|a|e^{|a|} )) + \log ((3/2)e^{|a|} ) + e/2\} , \hfill \\ then |e^a - p/q| > q^{ - (2 + \delta )} . \hfill \\ \end{gathered} $$   相似文献   

18.
We consider the existence of positive solutions of the singular nonlinear semipositone problem of the form $\left\{ \begin{gathered} - div(|x|^{ - \alpha p} |\nabla u|^{p - 2} \nabla u) = |x|^{ - (\alpha + 1)p + \beta } \left( {au^{p - 1} - f(u) - \frac{c} {{u^\gamma }}} \right),x \in \Omega , \hfill \\ u = 0,x \in \partial \Omega , \hfill \\ \end{gathered} \right. $ where Ω is a bounded smooth domain of ? N with 0 ∈ Ω, 1 < p < N, 0 ? α < (N ? p)/p, γ ∈ (0, 1), and a, β, c and λ are positive parameters. Here f: [0,∞) → ? is a continuous function. This model arises in the studies of population biology of one species with u representing the concentration of the species. We discuss the existence of a positive solution when f satisfies certain additional conditions. We use the method of sub-supersolutions to establish our results.  相似文献   

19.
We concern the sublinear Schrödinger-Poisson equations \(\left\{ \begin{gathered}- \Delta u + \lambda V\left( x \right)u + \phi u = f\left( {x,u} \right)in{\mathbb{R}^3} \hfill \\- \Delta \phi = {u^2}in{\mathbb{R}^3} \hfill \\ \end{gathered} \right.\) where λ > 0 is a parameter, VC(R3,[0,+∞)), fC(R3×R,R) and V-1(0) has nonempty interior. We establish the existence of solution and explore the concentration of solutions on the set V-1(0) as λ → ∞ as well. Our results improve and extend some related works.  相似文献   

20.
Sufficient conditions of solvability and unique solvability of the boundary value problem are established, where are measurable functions and the vector function is measurable in the first and continuous in the last kmn arguments; moreover, this function may have nonintegrable singularities with respect to the first argument.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号