首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
2.
Let ${\nu_{d} : \mathbb{P}^{r} \rightarrow \mathbb{P}^{N}, N := \left( \begin{array}{ll} r + d \\ \,\,\,\,\,\, r \end{array} \right)- 1,}$ denote the degree d Veronese embedding of ${\mathbb{P}^{r}}$ . For any ${P\, \in \, \mathbb{P}^{N}}$ , the symmetric tensor rank sr(P) is the minimal cardinality of a set ${\mathcal{S} \subset \nu_{d}(\mathbb{P}^{r})}$ spanning P. Let ${\mathcal{S}(P)}$ be the set of all ${A \subset \mathbb{P}^{r}}$ such that ${\nu_{d}(A)}$ computes sr(P). Here we classify all ${P \,\in\, \mathbb{P}^{n}}$ such that sr(P) <  3d/2 and sr(P) is computed by at least two subsets of ${\nu_{d}(\mathbb{P}^{r})}$ . For such tensors ${P\, \in\, \mathbb{P}^{N}}$ , we prove that ${\mathcal{S}(P)}$ has no isolated points.  相似文献   

3.
We consider a closed semi-algebraic set ${X \subset \mathbb{R}^n}$ and a C 2 semi-algebraic function ${f : \mathbb{R}^n \rightarrow\mathbb{R}}$ such that ${f_{\vert X}}$ has a finite number of critical points. We relate the topology of X to the topology of the sets ${X \cap \{ f * \alpha \}}$ , where ${* \in \{\le,=,\ge \}}$ and ${\alpha \in \mathbb{R}}$ , and the indices of the critical points of ${f_{\vert X}}$ and ${-f_{\vert X}}$ . We also relate the topology of X to the topology of the links at infinity of the sets ${X \cap \{ f * \alpha\}}$ and the indices of these critical points. We give applications when ${X=\mathbb{R}^n}$ and when f is a generic linear function.  相似文献   

4.
A Gizatullin surface is a normal affine surface V over $ \mathbb{C} $ , which can be completed by a zigzag; that is, by a linear chain of smooth rational curves. In this paper we deal with the question of uniqueness of $ \mathbb{C}^{ * } $ -actions and $ \mathbb{A}^{{\text{1}}} $ -fibrations on such a surface V up to automorphisms. The latter fibrations are in one to one correspondence with $ \mathbb{C}_{{\text{ + }}} $ -actions on V considered up to a “speed change”. Non-Gizatullin surfaces are known to admit at most one $ \mathbb{A}^{1} $ -fibration VS up to an isomorphism of the base S. Moreover, an effective $ \mathbb{C}^{ * } $ -action on them, if it does exist, is unique up to conjugation and inversion t $ \mapsto $ t ?1 of $ \mathbb{C}^{ * } $ . Obviously, uniqueness of $ \mathbb{C}^{ * } $ -actions fails for affine toric surfaces. There is a further interesting family of nontoric Gizatullin surfaces, called the Danilov-Gizatullin surfaces, where there are in general several conjugacy classes of $ \mathbb{C}^{ * } $ -actions and $ \mathbb{A}^{{\text{1}}} $ -fibrations, see, e.g., [FKZ1]. In the present paper we obtain a criterion as to when $ \mathbb{A}^{{\text{1}}} $ -fibrations of Gizatullin surfaces are conjugate up to an automorphism of V and the base $ S \cong \mathbb{A}^{{\text{1}}} $ . We exhibit as well large subclasses of Gizatullin $ \mathbb{C}^{ * } $ -surfaces for which a $ \mathbb{C}^{ * } $ -action is essentially unique and for which there are at most two conjugacy classes of $ \mathbb{A}^{{\text{1}}} $ -fibrations over $ \mathbb{A}^{{\text{1}}} $ .  相似文献   

5.
By a $\mathfrak{B}$ -regular variety, we mean a smooth projective variety over $\mathbb{C}$ admitting an algebraic action of the upper triangular Borel subgroup $\mathfrak{B} \subset {\text{SL}}_{2} {\left( \mathbb{C} \right)}$ such that the unipotent radical in $\mathfrak{B}$ has a unique fixed point. A result of Brion and the first author [4] describes the equivariant cohomology algebra (over $\mathbb{C}$ ) of a $\mathfrak{B}$ -regular variety X as the coordinate ring of a remarkable affine curve in $X \times \mathbb{P}^{1}$ . The main result of this paper uses this fact to classify the $\mathfrak{B}$ -invariant subvarieties Y of a $\mathfrak{B}$ -regular variety X for which the restriction map i Y : H *(X) → H *(Y) is surjective.  相似文献   

6.
7.
A double line ${C \subset \mathbb{P}^3}$ is a connected divisor of type (2, 0) on a smooth quadric surface. Fix ${(a, c) \in \mathbb{N}^2\ \backslash\ \{(0, 0)\}}$ . Let ${X \subset \mathbb{P}^3}$ be a general disjoint union of a lines and c double lines. Then X has maximal rank, i.e. for each ${t \in \mathbb{Z}}$ either ${h^1(\mathcal{I}_X(t)) = 0}$ or ${h^0(\mathcal{I}_X(t)) = 0}$ .  相似文献   

8.
9.
This paper concerns the existence and asymptotic characterization of saddle solutions in ${\mathbb {R}^{3}}$ for semilinear elliptic equations of the form $$-\Delta u + W'(u) = 0,\quad (x, y, z) \in {\mathbb {R}^{3}} \qquad\qquad\qquad (0.1)$$ where ${W \in \mathcal{C}^{3}(\mathbb {R})}$ is a double well symmetric potential, i.e. it satisfies W(?s) =  W(s) for ${s \in \mathbb {R},W(s) > 0}$ for ${s \in (-1,1)}$ , ${W(\pm 1) = 0}$ and ${W''(\pm 1) > 0}$ . Denoted with ${\theta_{2}}$ the saddle planar solution of (0.1), we show the existence of a unique solution ${\theta_{3} \in {\mathcal{C}^{2}}(\mathbb {R}^{3})}$ which is odd with respect to each variable, symmetric with respect to the diagonal planes, verifies ${0 < \theta_{3}(x,y,z) < 1}$ for x, y, z >  0 and ${\theta_{3}(x, y, z) \to_{z \to + \infty} \theta_{2}(x, y)}$ uniformly with respect to ${(x, y) \in \mathbb {R}^{2}}$ .  相似文献   

10.
In this paper we are concerned with the classification of the subsets A of ${\mathbb{Z}_p}$ which occur as images ${f(\mathbb{Z}_p^r)}$ of polynomial functions ${f:\mathbb{Z}_p^r\to \mathbb{Z}_p}$ , limiting ourselves to compact-open subsets (i.e. finite unions of open balls). We shall prove three main results: (i) Every compact-open ${A\subset \mathbb{Z}_p}$ is of the shape ${A=f(\mathbb{Z}_p^r)}$ for suitable r and ${f\in\mathbb{Z}_p[X_1,\ldots ,X_r]}$ . (ii) For each r 0 there is a compact-open A such that in (i) we cannot take r < r 0. (iii) For any compact-open set ${A\subset \mathbb{Z}_p}$ there exists a polynomial ${f\in\mathbb{Q}_p[X]}$ such that ${f(\mathbb{Z}_p)=A}$ . We shall also discuss in more detail which sets A can be represented as ${f(\mathbb{Z}_p)}$ for a polynomial ${f\in\mathbb{Z}_p[X]}$ in a single variable.  相似文献   

11.
Suppose $\mathfrak {X} = \{X_1, X_2, \ldots,\,X_m\}$ is a system of real smooth vector fields on an open neighbourhood Ω of the closure of a bounded connected open set M in $\mathbb {R}^N$ satisfying the finite rank condition of Hörmander, namely the rank of the Lie algebra generated by $\mathfrak {X}$ under the usual bracket operation is a constant equal to N. We study the smoothness of solutions of a class of quasilinear equations of the form $$Q_{\mathfrak {X}}u = \sum _{j=1}^m X_j^*a_j(x, u, Xu) +b (x, u, Xu) = 0$$ where $a_j,\,b \in C^{\infty}(\Omega \times \mathbb {R} \times \mathbb {R}^m; \mathbb {R})$ . It is shown that if the matrix $\left({\frac {\partial a_j}{\partial \xi_i}}\right)$ is positive definite on $M \times \mathbb {R}^{m+1}$ then any weak solution $u \in \mathcal {C}^{2,\alpha}(M, \mathfrak {X})$ belongs to C (M).  相似文献   

12.
The Dodd–Jensen Covering Lemma states that “if there is no inner model with a measurable cardinal, then for any uncountable set of ordinals X, there is a ${Y\in K}$ such that ${X\subseteq Y}$ and |X| = |Y|”. Assuming ZF+AD alone, we establish the following analog: If there is no inner model with an ${\mathbb {R}}$ –complete measurable cardinal, then the real core model ${K(\mathbb {R})}$ is a “very good approximation” to the universe of sets V; that is, ${K(\mathbb {R})}$ and V have exactly the same sets of reals and for any set of ordinals X with ${|{X}|\ge\Theta}$ , there is a ${Y\in K(\mathbb {R})}$ such that ${X\subseteq Y}$ and |X| = |Y|. Here ${\mathbb {R}}$ is the set of reals and ${\Theta}$ is the supremum of the ordinals which are the surjective image of ${\mathbb {R}}$ .  相似文献   

13.
A function ${u : X \to \mathbb{R}}$ defined on a partially ordered set is quasi-Leontief if, for all ${x \in X}$ , the upper level set ${\{x\prime \in X : u(x\prime) \geq u(x)\}}$ has a smallest element; such an element is an efficient point of u. An abstract game ${u_{i} : \prod^{n}_{j=1} X_j \to \mathbb{R}, i \in \{1, \ldots , n\}}$ , is a quasi-Leontief game if, for all i and all ${(x_{j})_{j \neq i} \in \prod_{j \neq i} X_{j}, u_{i}((x_{j})_{j \neq i};-) : X_{i} \to \mathbb{R}}$ is quasi-Leontief; a Nash equilibrium x* of an abstract game ${u_{i} :\prod^{n}_{j=1} X_{j} \to \mathbb{R}}$ is efficient if, for all ${i, x^{*}_{i}}$ is an efficient point of the partial function ${u_{i}((x^{*}_{j})_{j \neq i};-) : X_{i} \to \mathbb{R}}$ . We establish the existence of efficient Nash equilibria when the strategy spaces X i are topological semilattices which are Peano continua and Lawson semilattices.  相似文献   

14.
We study the set ${\mathcal{X}}$ of split operators acting in the Hilbert space ${\mathcal{H}}$ : $$\mathcal{X}=\{T\in \mathcal{B}(\mathcal{H}): N(T)\cap R(T)=\{0\} \ {\rm and} \ N(T)+R(T)=\mathcal{H}\}.$$ Inside ${\mathcal{X}}$ , we consider the set ${\mathcal{Y}}$ : $$\mathcal{Y}=\{T\in\mathcal{X}: N(T)\perp R(T)\}.$$ Several characterizations of these sets are given. For instance ${T\in\mathcal{X}}$ if and only if there exists an oblique projection ${Q}$ whose range is N(T) such that T + Q is invertible, if and only if T posseses a commuting (necessarilly unique) pseudo-inverse S (i.e. TS = ST, TST = T and STS = S). Analogous characterizations are given for ${\mathcal{Y}}$ . Two natural maps are considered: $${\bf q}:\mathcal{X} \to \mathbb{Q}:=\{{\rm oblique \ projections \ in} \, \mathcal{H} \}, \ {\bf q}(T)=P_{R(T)//N(T)}$$ and $${\bf p}:\mathcal{Y} \to \mathbb{P}:=\{{\rm orthogonal \ projections \ in} \ \mathcal{H} \}, \ {\bf p}(T)=P_{R(T)}, $$ where ${P_{R(T)//N(T)}}$ denotes the projection onto R(T) with nullspace N(T), and P R(T) denotes the orthogonal projection onto R(T). These maps are in general non continuous, subsets of continuity are studied. For the map q these are: similarity orbits, and the subsets ${\mathcal{X}_{c_k}\subset \mathcal{X}}$ of operators with rank ${k<\infty}$ , and ${\mathcal{X}_{F_k}\subset\mathcal{X}}$ of Fredholm operators with nullity ${k<\infty}$ . For the map p there are analogous results. We show that the interior of ${\mathcal{X}}$ is ${\mathcal{X}_{F_0}\cup\mathcal{X}_{F_1}}$ , and that ${\mathcal{X}_{c_k}}$ and ${\mathcal{X}_{F_k}}$ are arc-wise connected differentiable manifolds.  相似文献   

15.
Let ${P(t) \in \mathbb{Q}[t]}$ be an irreducible quadratic polynomial and suppose that K is a quartic extension of ${\mathbb{Q}}$ containing the roots of P(t). Let ${{\bf N}_{K/\mathbb{Q}}({\rm x})}$ be a full norm form for the extension ${K/\mathbb{Q}}$ . We show that the variety $$\begin{array}{ll}P(t)={\bf N}_{K/\mathbb{Q}}({\rm x})\neq 0\end{array}$$ satisfies the Hasse principle and weak approximation. The proof uses analytic methods.  相似文献   

16.
We prove a new local inequality for divisors on surfaces and utilize it to compute α-invariants of singular del Pezzo surfaces, which implies that del Pezzo surfaces of degree one whose singular points are of type $\mathbb{A}_{1}$ , $\mathbb{A}_{2}$ , $\mathbb{A}_{3}$ , $\mathbb{A}_{4}$ , $\mathbb{A}_{5}$ , or $\mathbb{A}_{6}$ are Kähler-Einstein.  相似文献   

17.
Linear recurring sequences over finite fields play an important role in coding theory and cryptography. It is known that subfield subcodes of linear codes yield some good codes. In this paper, we study linear recurring sequences and subfield subcodes. Let Mqm(f(x)) denote the set of all linear recurring sequences over Fqm with characteristic polynomial f(x) over Fqm . Denote the restriction of Mqm(f(x)) to sequences over Fq and the set after applying trace function to each sequence in Mqm(f(x)) by Mqm(f(x)) | Fq and Tr( Mqm(f(x))), respectively. It is shown that these two sets are both complete sets of linear recurring sequences over Fq with some characteristic polynomials over Fq. In this paper, we firstly determine the characteristic polynomials for these two sets. Then, using these results, we determine the generator polynomials of subfield subcodes and trace codes of cyclic codes over Fqm .  相似文献   

18.
A. Jabbari 《Semigroup Forum》2012,85(1):160-168
In Jabbari and Namioka (Milan J. Math. 78:503?C522, 2010), the authors characterized the spectrum M(W) of the Weyl algebra W, i.e. the norm closure of the algebra generated by the family of functions $\{n\mapsto x^{n^{k}}; x\in\mathbb{T}, k\in\mathbb{N}\}$ , ( $\mathbb{T}$ the unit circle), with a closed subgroup of $E(\mathbb{T})^{\mathbb{N}}$ where $E(\mathbb{T})$ denotes the family of the endomorphisms of the multiplicative group $\mathbb{T}$ . But the size of M(W) in $E(\mathbb{T})^{\mathbb{N}}$ as well as the induced group operation were left as a problem. In this paper, we will give a solution to this problem.  相似文献   

19.
We propose a first-order augmented Lagrangian algorithm (FALC) to solve the composite norm minimization problem $$\begin{aligned} \begin{array}{ll} \min \limits _{X\in \mathbb{R }^{m\times n}}&\mu _1\Vert \sigma (\mathcal{F }(X)-G)\Vert _\alpha +\mu _2\Vert \mathcal{C }(X)-d\Vert _\beta ,\\ \text{ subject} \text{ to}&\mathcal{A }(X)-b\in \mathcal{Q }, \end{array} \end{aligned}$$ where $\sigma (X)$ denotes the vector of singular values of $X \in \mathbb{R }^{m\times n}$ , the matrix norm $\Vert \sigma (X)\Vert _{\alpha }$ denotes either the Frobenius, the nuclear, or the $\ell _2$ -operator norm of $X$ , the vector norm $\Vert .\Vert _{\beta }$ denotes either the $\ell _1$ -norm, $\ell _2$ -norm or the $\ell _{\infty }$ -norm; $\mathcal{Q }$ is a closed convex set and $\mathcal{A }(.)$ , $\mathcal{C }(.)$ , $\mathcal{F }(.)$ are linear operators from $\mathbb{R }^{m\times n}$ to vector spaces of appropriate dimensions. Basis pursuit, matrix completion, robust principal component pursuit (PCP), and stable PCP problems are all special cases of the composite norm minimization problem. Thus, FALC is able to solve all these problems in a unified manner. We show that any limit point of FALC iterate sequence is an optimal solution of the composite norm minimization problem. We also show that for all $\epsilon >0$ , the FALC iterates are $\epsilon $ -feasible and $\epsilon $ -optimal after $\mathcal{O }(\log (\epsilon ^{-1}))$ iterations, which require $\mathcal{O }(\epsilon ^{-1})$ constrained shrinkage operations and Euclidean projection onto the set $\mathcal{Q }$ . Surprisingly, on the problem sets we tested, FALC required only $\mathcal{O }(\log (\epsilon ^{-1}))$ constrained shrinkage, instead of the $\mathcal{O }(\epsilon ^{-1})$ worst case bound, to compute an $\epsilon $ -feasible and $\epsilon $ -optimal solution. To best of our knowledge, FALC is the first algorithm with a known complexity bound that solves the stable PCP problem.  相似文献   

20.
In this note we prove the following: Let n?≥ 2 be a fixed integer. A system of additive functions ${A_{1},A_{2},\ldots,A_{n}:\mathbb{R} \to\mathbb{R}}$ is linearly dependent (as elements of the ${\mathbb{R}}$ vector space ${\mathbb{R}^{\mathbb{R}}}$ ), if and only if, there exists an indefinite quadratic form ${Q:\mathbb{R}^{n}\to\mathbb{R} }$ such that ${Q(A_{1}(x),A_{2}(x),\ldots,A_{n}(x))\geq 0}$ or ${Q(A_{1}(x),A_{2}(x),\ldots,A_{n}(x))\leq 0}$ holds for all ${x\in\mathbb{R}}$ .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号