首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 61 毫秒
1.
Let fC[?1, 1]. Let the approximation rate of Lagrange interpolation polynomial of f based on the nodes $ \left\{ {\cos \frac{{2k - 1}} {{2n}}\pi } \right\} \cup \{ - 1,1\} $ be Δ n + 2(f, x). In this paper we study the estimate of Δ n + 2(f,x), that keeps the interpolation property. As a result we prove that $$ \Delta _{n + 2} (f,x) = \mathcal{O}(1)\left\{ {\omega \left( {f,\frac{{\sqrt {1 - x^2 } }} {n}} \right)\left| {T_n (x)} \right|\ln (n + 1) + \omega \left( {f,\frac{{\sqrt {1 - x^2 } }} {n}\left| {T_n (x)} \right|} \right)} \right\}, $$ where T n (x) = cos (n arccos x) is the Chebeyshev polynomial of first kind. Also, if fC r [?1, 1] with r ≧ 1, then $$ \Delta _{n + 2} (f,x) = \mathcal{O}(1)\left\{ {\frac{{\sqrt {1 - x^2 } }} {{n^r }}\left| {T_n (x)} \right|\omega \left( {f^{(r)} ,\frac{{\sqrt {1 - x^2 } }} {n}} \right)\left( {\left( {\sqrt {1 - x^2 } + \frac{1} {n}} \right)^{r - 1} \ln (n + 1) + 1} \right)} \right\}. $$   相似文献   

2.
LetL(x) denote the number of square full integers ≤x. By a square-full integer, we mean a positive integer all of whose prime factors have multiplicity at least two. It is well known that $$\left. {L(x)} \right| \sim \frac{{\zeta ({3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-\nulldelimiterspace} 2})}}{{\zeta (3)}}x^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} + \frac{{\zeta ({2 \mathord{\left/ {\vphantom {2 3}} \right. \kern-\nulldelimiterspace} 3})}}{{\zeta (2)}}x^{{1 \mathord{\left/ {\vphantom {1 3}} \right. \kern-\nulldelimiterspace} 3}} ,$$ where ζ(s) denotes the Riemann Zeta function. Let Δ(x) denote the error function in the asymptotic formula forL(x). On the basis of the Riemann hypothesis (R.H.), it is known that \(\Delta (x) = O(x^{\tfrac{{13}}{{81}} + \varepsilon } )\) for every ε>0. In this paper, we prove the following results on the assumption of R.H.: (1) $$\frac{1}{x}\int\limits_1^x {\Delta (t)dt} = O(x^{\tfrac{1}{{12}} + \varepsilon } ),$$ (2) $$\int\limits_1^x {\frac{{\Delta (t)}}{t}\log } ^{v - 1} \left( {\frac{x}{t}} \right) = O(x^{\tfrac{1}{{12}} + \varepsilon } )$$ for any integer ν≥1. In fact, we prove some general results and deduce the above from them. On the basis of (1) and (2) above, we conjecture that \(\Delta (x) = O(x^{{1 \mathord{\left/ {\vphantom {1 {12}}} \right. \kern-0em} {12}} + \varepsilon } )\) under the assumption of R.H.  相似文献   

3.
The direct method is applied to the two dimensional Burgers equation with a variable coefficient (u t + uu x ? u xx ) x + s(t)u yy = 0 is transformed into the Riccati equation $H' - \tfrac{1} {2}H^2 + \left( {\tfrac{\rho } {2} - 1} \right)H = 0$ via the ansatz $u\left( {x,y,t} \right) = \tfrac{1} {{\sqrt t }}H(\rho ) + \tfrac{y} {{2\sqrt t }}\rho \left( {x,y,t} \right) = \tfrac{x} {{\sqrt t }} - y$ , provided that s(t) = t ?3/2. Further, a generalized Cole-Hopf transformations $u\left( {x,y,t} \right) = \tfrac{y} {{2\sqrt t }} - \tfrac{2} {{\sqrt t }}\tfrac{{U_\rho (\rho ,r)}} {{U(\rho ,r)}}$ , $\rho \left( {x,y,t} \right) = \tfrac{x} {{\sqrt t }} - y$ , r(t) = log t is derived to linearize (u t + uu x ? u xx ) x + t ?3/2 u yy to the parabolic equation $U_r = U_{\rho \rho } + \left( {\tfrac{\rho } {2} - 1} \right)U_\rho$ .  相似文献   

4.
We consider the question of evaluating the normalizing multiplier $$\gamma _{n,k} = \frac{1}{\pi }\int_{ - \pi }^\pi {\left( {\frac{{sin\tfrac{{nt}}{2}}}{{sin\tfrac{t}{2}}}} \right)^{2k} dt} $$ for the generalized Jackson kernel J n,k (t). We obtain the explicit formula $$\gamma _{n,k} = 2\sum\limits_{p = 0}^{\left[ {k - \tfrac{k}{n}} \right]} {( - 1)\left( {\begin{array}{*{20}c} {2k} \\ p \\ \end{array} } \right)\left( {\begin{array}{*{20}c} {k(n + 1) - np - 1} \\ {k(n - 1) - np} \\ \end{array} } \right)} $$ and the representation $$\gamma _{n,k} = \sqrt {\frac{{24}}{\pi }} \cdot \frac{{(n - 1)^{2k - 1} }}{{\sqrt {2k - 1} }}\left[ {1\frac{1}{8} \cdot \frac{1}{{2k - 1}} + \omega (n,k)} \right],$$ , where $$\left| {\omega (n,k)} \right| < \frac{4}{{(2k - 1)\sqrt {ln(2k - 1)} }} + \sqrt {12\pi } \cdot \frac{{k^{\tfrac{3}{2}} }}{{n - 1}}\left( {1 + \frac{1}{{n - 1}}} \right)^{2k - 2} .$$ .  相似文献   

5.
Let S j : (Ω, P) → S 1 ? ? be an i.i.d. sequence of Steinhaus random variables, i.e. variables which are uniformly distributed on the circle S 1. We determine the best constants a p in the Khintchine-type inequality $${a_p}{\left\| x \right\|_2} \leqslant {\left( {{\text{E}}{{\left| {\sum\limits_{j = 1}^n {{x_j}{S_j}} } \right|}^p}} \right)^{1/p}} \leqslant {\left\| x \right\|_2};{\text{ }}x = ({x_j})_{j = 1}^n \in {{\Bbb C}^n}$$ for 0 < p < 1, verifying a conjecture of U. Haagerup that $${a_p} = \min \left( {\Gamma {{\left( {\frac{p}{2} + 1} \right)}^{1/p}},\sqrt 2 {{\left( {{{\Gamma \left( {\frac{{p + 1}}{2}} \right)} \mathord{\left/ {\vphantom {{\Gamma \left( {\frac{{p + 1}}{2}} \right)} {\left[ {\Gamma \left( {\frac{p}{2} + 1} \right)\sqrt \pi } \right]}}} \right. \kern-\nulldelimiterspace} {\left[ {\Gamma \left( {\frac{p}{2} + 1} \right)\sqrt \pi } \right]}}} \right)}^{1/p}}} \right)$$ . Both expressions are equal for p = p 0 }~ 0.4756. For p ≥ 1 the best constants a p have been known for some time. The result implies for a norm 1 sequence x ∈ ? n , ‖x2 = 1, that $${\text{E}}\ln \left| {\frac{{{S_1} + {S_2}}}{{\sqrt 2 }}} \right| \leqslant {\text{E}}\ln \left| {\sum\limits_{j = 1}^n {{x_j}{S_j}} } \right|$$ , answering a question of A. Baernstein and R. Culverhouse.  相似文献   

6.
Let F(Z) be a cusp form of integral weight k relative to the Siegel modular group Spn(Z) and let f(N) be its Fourier coefficient with index N. Making use of Rankin's convolution, one proves the estimate (1) $$f(\mathcal{N}) = O(\left| \mathcal{N} \right|^{\tfrac{k}{2} - \tfrac{1}{2}\delta (n)} ),$$ where $$\delta (n) = \frac{{n + 1}}{{\left( {n + 1} \right)\left( {2n + \tfrac{{1 + ( - 1)^n }}{2}} \right) + 1}}.$$ Previously, for n ≥ 2 one has known Raghavan's estimate $$f(\mathcal{N}) = O(\left| \mathcal{N} \right|^{\tfrac{k}{2}} )$$ In the case n=2, Kitaoka has obtained a result, sharper than (1), namely: (2) $$f(\mathcal{N}) = O(\left| \mathcal{N} \right|^{\tfrac{k}{2} - \tfrac{1}{4} + \varepsilon } ).$$ At the end of the paper one investigates specially the case n=2. It is shown that in some cases the result (2) can be improved to, apparently, unimprovable estimates if one assumes some analogues of the Petersson conjecture. These results lead to a conjecture regarding the optimal estimates of f(N), n=2.  相似文献   

7.
The following theorem is proved. If $$f(x) = \frac{{\alpha _0 }}{2} + \sum\nolimits_k^\infty \alpha _k \cos 2\pi kx + b_k \sin 2\pi kx,$$ wherea k ↓ 0 and bk ↓ 0, then $$\mathop {\lim }\limits_{n \to \infty } \frac{1}{n}\sum\nolimits_{s = 0}^{n - 1} {f\left( {x + \frac{s}{n}} \right) = \frac{{\alpha _0 }}{2}} $$ on (0, 1) in the sense of convergence in measure. If in additionf(x) ε L2 (0, 1), then this relation holds for almost all x.  相似文献   

8.
Пустьf(x) — интегрируемая 2π-периодическая функция, aω(f,δ) иs n(x)=sn(f, x). соответственно, модуль непрерывности иn-ая сумма Фурье этой функции. В настоящей работе, продолжающей исследования Г. Фрейда, Л. Лейндлера—E. M. Никищина, И. Сабадоша и К. И. Осколкова, доказывается следующая теорема.Если Ω(u) — выпуклая или вогнутая непрерывная функция и если (1) 1 $$\left\| {\left. {\sum\limits_{k = 1}^\infty \Omega (|S_k (x) - f(x)|)} \right\|_C } \right.$$ то 1 $$\omega (f;\delta ) = O\left( {\delta \int\limits_\delta ^1 {\frac{{\bar \Omega (v)}}{{v^2 }}dv} } \right),$$ где ¯Ω(v) —функция, обратная к Ω(и). При этом существует функция f0(х), удовлетворяющая условию (1), для которой $$\omega (f;\delta ) = c\delta \int\limits_\delta ^1 {\frac{{\bar \Omega (v)}}{{v^2 }}dv} (c > 0).$$ ЕслиΩ(u)— вогнутая функция, то интеграл \(\int\limits_\delta ^1 {\frac{{\bar \Omega (v)}}{{v^2 }}dv} \) можно заменить на \(\int\limits_{\bar \Omega (\delta )}^1 {\frac{{du}}{{\Omega (u)}}.} \) . Отсюда вытекает, что еслиΩ(u) — функция типа модуля непрерывности, то для того, чтобы (1) всегда влекло принадлежность f(x) классу Lip 1, необходимо и достаточно условие \(\int\limits_0^1 {\frac{{du}}{{\Omega (u)}}}< \infty .\)   相似文献   

9.
The following nontrivial estimate is obtained for short exponential sums: $$Sc\left( {\alpha ,x,y} \right) = \sum\limits_{x - y < n \leqslant x} {e\left( {\alpha \left[ {n^c } \right]} \right) < < y\ln ^A x,}$$ where $y \geqslant x^{\tfrac{1} {2}} \ln ^A x,x^{1 - c} y^{ - 1} \ln ^A x \leqslant \left| \alpha \right| \leqslant 0.5$ , c > 2 and ∥c∥ ≥ δ, A is a fixed positive number, and $\delta = \delta \left( {x,c,A} \right) = \left( {2^{\left[ c \right] + 1} - 1} \right)\left( {A + 2.5} \right) \cdot \frac{{\ln \ln x}} {{\ln x}}$ .  相似文献   

10.
We show that the number of elements in FM(1+1+n), the modular lattice freely generated by two single elements and an n-element chain, is 1 $$\frac{1}{{6\sqrt 2 }}\sum\limits_{k = 0}^{n + 1} {\left[ {2\left( {\begin{array}{*{20}c} {2k} \\ k \\ \end{array} } \right) - \left( {\begin{array}{*{20}c} {2k} \\ {k - 2} \\ \end{array} } \right)} \right]} \left( {\lambda _1^{n - k + 2} - \lambda _2^{n - k + 2} } \right) - 2$$ , where \(\lambda _{1,2} = {{\left( {4 \pm 3\sqrt 2 } \right)} \mathord{\left/ {\vphantom {{\left( {4 \pm 3\sqrt 2 } \right)} 2}} \right. \kern-0em} 2}\) .  相似文献   

11.
12.
пУстьE — ИжМЕРИМОЕ пО лЕБЕгУ ОгРАНИЧЕННОЕ МНОжЕстВО пОлОжИтЕльНОИ плОЩА ДИ mes2 E кОМплЕксНОИ плОск ОстИ с. кАк ОБыЧНО, пРИp≧1 ОБОжНАЧИМ ЧЕРЕжL p (E) БА НАхОВО пРОстРАНстВО ИжМЕРИ Мых пО лЕБЕгУ НАE кОМплЕксНОжНАЧНых Ф УНкцИИf с сУММИРУЕМО Иp—стЕпЕНьУ Их МОДУль И ОБыЧНОИ НОРМОИ \(\left\| \cdot \right\|_p = \left\| \cdot \right\|_{L_p (E)}\) . ЧЕР ЕжL p R n (f,E) ОБОжНАЧИМ НАИМЕН ьшЕЕ УклОНЕНИЕf?L p (E) От РАц ИОНАльНых ФУНкцИИ ст ЕпЕНИ ≦n кОМплЕксНОгО пЕРЕМЕ ННОгОz пО НОРМЕ ∥ · ∥. пОлОжИМf(z)=0 Дльz?¯CE,E δ δ-ОкРЕстНОсть МНО жЕстВАE (δ>0), И $$\omega _p (\delta ,f) = \mathop {\sup {\mathbf{ }}}\limits_{\left| h \right|< \delta } \{ \int\limits_{E_\sigma } {\int {{\mathbf{ }}|f(z + h) - f(z)|^p } d\sigma } \} ^{1/p} .$$ тЕОРЕМА.пУсть 1≦p<2,f?L p (E),n≧4.тОгДА $$\begin{array}{*{20}c} {L^p R_n (f,E) \leqq 12\omega _p \left( {\frac{{\delta + \ln n}}{{\sqrt n }},f} \right){\mathbf{ }}npu{\mathbf{ }}p = 1,} \\ {L^p R_n (f,E) \leqq \frac{{24}}{{(p - 1)(2 - p)}}\omega _p (n^{(p - 2)/2p} ,f){\mathbf{ }}npu{\mathbf{ }}1< p< 2,} \\ {L^1 R_n (\bar z,[0,1] \times [0,1]) \geqq \frac{1}{{32\sqrt n }}.} \\ \end{array} $$ .  相似文献   

13.
On simultaneous approximation by lagrange interpolating polynomials   总被引:1,自引:0,他引:1  
This paper considers to replace △_m(x)=(1-x~2)~2(1/2)/n +1/n~2 in the following result for simultaneousLagrange interpolating approximation with (1-x~2)~2(1/2)/n: Let f∈C_(-1.1)~0 and r=[(q+2)/2],then|f~(k)(x)-P_~(k)(f,x)|=O(1)△_(n)~(a-k)(x)ω(f~(a),△(x))(‖L_n-‖+‖L_n‖),0≤k≤q,where P_n( f ,x)is the Lagrange interpolating polynomial of degree n+ 2r-1 of f on the nodes X_nU Y_n(see the definition of the text), and thus give a problem raised in [XiZh] a complete answer.  相似文献   

14.
Let f and g be distributions and let gn = (g * δn)(x), where δn (x) is a certain converging to the Dirac delta function. The non-commutative neutrix product fog of f and g to be the limit of the sequence {fgn }, provided its limit h exists in the sense that sequence is defined N-lim n-∞(f(x)g,, (x), φ(x)〉 = (h(x), φ(x)},for all functions p in 2. It is proved that (x^λ+1n^px+)0(x^μ+1n^qx+)=x+^λμ1n^p+qx+,(x^λ-1n^qx-)=x-^λ+μ1n^p+qx-,for λ+μ〈-1; λ,μ, λ+μ≠-1,-2…and p,q=0,1,2……  相似文献   

15.
16.
We study the approximation of functions by linear polynomial means of their Fourier series with a function-multiplier φ that is equal to 1 not only at zero, in contrast with classical methods of summability. The exact order of convergence to zero of the sequence $$ \mathop{\max}\limits_{{x\in \left[ {-\pi, \pi } \right]}}\left| {f(x)-\sum\limits_{{\left| k \right|\leq n}} {\varphi \left( {\frac{{k\pi }}{n}} \right){{\hat{f}}_k}{e^{ikx }}} } \right| $$ ( $ {{\hat{f}}_k} $ Fourier coefficients) as n→∞ is obtained. The answer is given in terms of the values of difference operators of a continuous function f and a special K-functional (step of $ \frac{\pi }{n} $ ). In addition, we obtain not only the sufficient conditions for φ but the necessary ones as well.  相似文献   

17.
Доказывается, что для наименьших равномер ных рациональных уклоне нийR n(f) выпуклой на [0,1] функции с модулем непрерывно сти, не превосходящемω(δ), сп раведлива оценка $$R_n (f) \leqq c\frac{{\ln ^2 n}}{{n^2 }}\mathop {\max }\limits_{e^{ - n} \leqq \theta< 1} \left\{ {\omega (\theta )\ln \frac{1}{\theta }} \right\},$$ гдес — абсолютная по стоянная.  相似文献   

18.
The problem of minimizing the functional (A) $${}_a\smallint ^b \varphi (x,y,y',y'')dx$$ under the conditions (B) $$y(a) = a_0 ,y'(a) = a_1 ,y(b) = b_0 ,y'(b) = b_1$$ is replaced by the problem of finding the vector (y1,y2,...,yn?1) on which the sum (C) $$\sum\limits_{\kappa = 0}^n {C_\kappa \varphi (x_\kappa ,y_\kappa ,\left. {\frac{{y_{\kappa + 1} - y_\kappa }}{h},\frac{{y_{\kappa + 1} - 2y_\kappa + y_{\kappa + 1} )}}{{h^2 }}} \right)}$$ takes a minimal value. Under certain conditions on ? andC k it is proved that a solution exists for the difference scheme constructed. The method of differentiation with respect to a parameter is used for the proof.  相似文献   

19.
20.
стАтьь ьВльЕтсь пРОД ОлжЕНИЕМ пРЕДыДУЩЕИ ОДНОИМЕННОИ РАБОты АВтОРА, гДЕ ИжУ ЧАлсь пОРьДОк ВЕлИЧИН пРИ УслОВИьх, ЧтО α>-1/2, Рα >- 1 И ЧтО МАтРИцАt nk УДОВлЕтВОРьЕт НЕкОт ОРОМУ УслОВИУ РЕгУльРНОстИ. жДЕсь ДОкАжыВАЕтсь, Ч тО ЕслИfH Ω, тО ВыпОлНь Етсь ОцЕНкА $$\left\{ {\frac{1}{{\lambda _n }}\mathop \Sigma \limits_{k = n - \lambda _n + 1}^n \left| {\sigma _k^\alpha \left( x \right) - f\left( x \right)} \right|^p } \right\}^{{1 \mathord{\left/ {\vphantom {1 p}} \right. \kern-\nulldelimiterspace} p}} = O\left( {\left\{ {\frac{1}{{\lambda _n }}\mathop \Sigma \limits_{k = n - \lambda _n + 1}^n \left( {\frac{1}{k}\mathop \smallint \limits_{{1 \mathord{\left/ {\vphantom {1 k}} \right. \kern-\nulldelimiterspace} k}}^{2\pi } \frac{{\omega \left( t \right)}}{{t^2 }}dt} \right)^p } \right\}^{{1 \mathord{\left/ {\vphantom {1 p}} \right. \kern-\nulldelimiterspace} p}} + \left( {\frac{{\lambda _n }}{n}} \right)^\alpha \omega \left( {\frac{1}{n}} \right)} \right)$$ 1=1, λn+1n≦1), А тАкжЕ ЧтО Ёт А ОцЕНкА ОкОНЧАтЕльН А В сВОИх тЕРМИНАх; пОДОБ НыИ РЕжУль-тАт спРАВЕДлИВ тАкжЕ И Дль сОпРьжЕННОИ ФУНкцИИ . ДОкАжыВАЕтсь, ЧтО Усл ОВИьα>?1/2 И>?1, кОтОРыЕ Б ылИ НАлОжЕНы В УпОМьНУтО И ВышЕ ЧАстИ I, сУЩЕстВЕН Ны.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号