首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper we present a multistep difference scheme for the problem of miscible displacement of incompressible fluid flow in porous media. The discretization involves a three-level time scheme based on the characteristic method and a five-point finite difference scheme for space discretization. We prove that the convergence is of order O(h2+(Δt)2), which is in contrast to the convergence of order O(ht) proved for a singlestep characteristic with the same space discretization. Numerical experiments demonstrate the stability and second-order convergence of the scheme.  相似文献   

2.
EQ rot 1 nonconforming finite element approximation to a class of nonlinear dual phase lagging heat conduction equations is discussed for semi-discrete and fully-discrete schemes. By use of a special property, that is, the consistency error of this element is of order O(h2 ) one order higher than its interpolation error O(h), the superclose results of order O(h2 ) in broken H1 -norm are obtained. At the same time, the global superconvergence in broken H1 -norm is deduced by interpolation postprocessing technique. Moreover, the extrapolation result with order O(h4 ) is derived by constructing a new interpolation postprocessing operator and extrapolation scheme based on the known asymptotic expansion formulas of EQ rot 1 element. Finally, optimal error estimate is gained for a proposed fully-discrete scheme by different approaches from the previous literature.  相似文献   

3.
The main objective of this paper is to present a new rectangular nonconforming finite element scheme with the second order convergence behavior for approximation of Maxwell’s equations.Then the corresponding optimal error estimates are derived.The difficulty in construction of this finite element scheme is how to choose a compatible pair of degrees of freedom and shape function space so as to make the consistency error due to the nonconformity of the element being of order O(h 3 ) ,properly one order higher than that of its interpolation error O(h 2 ) in the broken energy norm,where h is the subdivision parameter tending to zero.  相似文献   

4.
Quasi-Wilson nonconforming finite element approximation for a class of nonlinear Sobolev equa-tions is discussed on rectangular meshes. We first prove that this element has two special characters by novel approaches. One is that (▽h ( u-Ihu )1, ▽hvh) h may be estimated as order O ( h2 ) when u ∈ H3 (Ω), where Ihu denotes the bilinear interpolation of u , vh is a polynomial belongs to quasi-Wilson finite element space and ▽h denotes the piecewise defined gradient operator, h is the mesh size tending to zero. The other is that the consistency error of this element is of order O ( h2 ) /O ( h3 ) in broken H 1-norm, which is one/two order higher than its interpolation error when u ∈ H3 (Ω) /H4 (Ω). Then we derive the optimal order error estimate and su- perclose property via mean-value method and the known high accuracy result of bilinear element. Furthermore, we deduce the global superconvergence through interpolation post processing technique. At last, an extrapola- tion result of order O ( h3 ), two order higher than traditional error estimate, is obtained by constructing a new suitable extrapolation scheme.  相似文献   

5.
In this paper, some superconvergence results of high-degree finite element method are obtained for solving a second order elliptic equation with variable coefficients on the inner locally symmetric mesh with respect to a point x 0 for triangular meshes. By using of the weak estimates and local symmetric technique, we obtain improved discretization errors of O(h p+1 |ln h|2) and O(h p+2 |ln h|2) when p (≥ 3) is odd and p (≥ 4) is even, respectively. Meanwhile, the results show that the combination of the weak estimates and local symmetric technique is also effective for superconvergence analysis of the second order elliptic equation with variable coefficients.  相似文献   

6.
We present the convergence analysis of the rectangular Morley element scheme utilised on the second order problem in arbitrary dimensions. Specifically, we prove that the convergence of the scheme is of O(h) order in energy norm and of O(h2) order in L2 norm on general d-rectangular triangulations. Moreover, when the triangulation is uniform, the convergence rate can be of O(h2) order in energy norm, and the convergence rate in L2 norm is still of O(h2) order, which cannot be improved. Numerical examples are presented to demonstrate our theoretical results.  相似文献   

7.
The cable equation is one of the most fundamental equations for modeling neuronal dynamics. These equations can be derived from the Nernst-Planck equation for electro-diffusion in smooth homogeneous cylinders. Fractional cable equations are introduced to model electrotonic properties of spiny neuronal dendrites. In this paper, a Galerkin finite element method(GFEM) is presented for the numerical simulation of the fractional cable equation(FCE) involving two integro-differential operators. The proposed method is based on a semi-discrete finite difference approximation in time and Galerkin finite element method in space. We prove that the numerical solution converges to the exact solution with order O(τ+hl+1) for the lth-order finite element method. Further, a novel Galerkin finite element approximation for improving the order of convergence is also proposed. Finally, some numerical results are given to demonstrate the theoretical analysis. The results show that the numerical solution obtained by the improved Galerkin finite element approximation converges to the exact solution with order O(τ2+hl+1).  相似文献   

8.
This paper investigates the lowest-order weak Galerkin finite element (WGFE) method for solving reaction–diffusion equations with singular perturbations in two and three space dimensions. The system of linear equations for the new scheme is positive definite, and one might readily get the well-posedness of the system. Our numerical experiments confirmed our error analysis that our WGFE method of the lowest order could deliver numerical approximations of the order O(h1/2) and O(h) in H1 and L2 norms, respectively.  相似文献   

9.
The lowest order H1-Galerkin mixed finite element method (for short MFEM) is proposed for a class of nonlinear sine-Gordon equations with the simplest bilinear rectangular element and zero order Raviart-Thomas element. Base on the interpolation operator instead of the traditional Ritz projection operator which is an indispensable tool in the traditional FEM analysis, together with mean-value technique and high accuracy analysis, the superclose properties of order O(h2)/O(h2 + τ2) in H1-norm and H(div;Ω)-norm are deduced for the semi-discrete and the fully-discrete schemes, where h, τ denote the mesh size and the time step, respectively, which improve the results in the previous literature.  相似文献   

10.
In this paper, a compact finite difference method is proposed for the solution of time fractional advection-dispersion equation which appears extensively in fluid dynamics. In this approach the time fractional derivative of mentioned equation is approximated by a scheme of order O(τ 2???α ), 0?<?α?<?1, and spatial derivatives are replaced with a fourth order compact finite difference scheme. We will prove the unconditional stability and solvability of proposed scheme. Also we show that the method is convergence with convergence order O(τ 2???α ?+?h 4). Numerical examples confirm the theoretical results and high accuracy of proposed scheme.  相似文献   

11.
A new nonconforming triangular element for the equations of planar linear elasticity with pure traction boundary conditions is considered. By virtue of construction of the element, the discrete version of Korn’s second inequality is directly proved to be valid. Convergence rate of the finite element methods is uniformly optimal with respect to λ. Error estimates in the energy norm and L2-norm are O(h2) and O(h3), respectively.  相似文献   

12.
In this article, a nonconforming quadrilateral element(named modified quasiWilson element) is applied to solve the nonlinear schr¨odinger equation(NLSE). On the basis of a special character of this element, that is, its consistency error is of order O(h~3) for broken H1-norm on arbitrary quadrilateral meshes, which is two order higher than its interpolation error, the optimal order error estimate and superclose property are obtained. Moreover,the global superconvergence result is deduced with the help of interpolation postprocessing technique. Finally, some numerical results are provided to verify the theoretical analysis.  相似文献   

13.
In this paper, a linear three-level average implicit finite difference scheme for the numerical solution of the initial-boundary value problem of Generalized Rosenau-Burgers equation is presented. Existence and uniqueness of numerical solutions are discussed. It is proved that the finite difference scheme is convergent in the order of O(τ2 + h2) and stable. Numerical simulations show that the method is efficient.  相似文献   

14.
In this article, a Crank–Nicolson linear finite volume element scheme is developed to solve a hyperbolic optimal control problem. We use the variational discretization technique for the approximation of the control variable. The optimal convergent order O(h2 + k2) is proved for the numerical solution of the control, state and adjoint‐state in a discrete L2‐norm. To derive this result, we also get the error estimate (convergent order O(h2 + k2)) of Crank–Nicolson finite volume element approximation for the second‐order hyperbolic initial boundary value problem. Numerical experiments are presented to verify the theoretical results.© 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 1331–1356, 2016  相似文献   

15.
In this article, a compact finite difference scheme for the coupled nonlinear Schrödinger equations is studied. The scheme is proved to conserve the original conservative properties. Unconditional stability and convergence in maximum norm with order O(τ2 + h4) are also proved by the discrete energy method. Finally, numerical results are provided to verify the theoretical analysis.  相似文献   

16.
The convergence of finite element methods for linear elliptic boundary value problems of second and forth order is well understood. In this article, we introduce finite element approximations of some linear semi-elliptic boundary value problem of mixed order on a two-dimensional rectangular domain Q. The equation is of second order in one direction and forth order in the other and appears in the optimal control of parabolic partial differential equations if one eliminates the control and the state (or the adjoint state) in the first order optimality conditions. We establish a regularity result and estimate for the finite element error of conforming approximations of this equation. The finite elements in use have a tensor product structure, in one dimension we use linear, quadratic or cubic Lagrange elements in the other dimension cubic Hermite elements. For these elements, we prove the error bound O(h 2 + τ k ) in the energy norm and O((h 2 + τ k )(h 2 + τ)) in the L 2(Q)-norm.  相似文献   

17.
This is the further work on compact finite difference schemes for heat equation with Neumann boundary conditions subsequent to the paper, [Sun, Numer Methods Partial Differential Equations (NMPDE) 25 (2009), 1320–1341]. A different compact difference scheme for the one‐dimensional linear heat equation is developed. Truncation errors of the proposed scheme are O2 + h4) for interior mesh point approximation and O2 + h3) for the boundary condition approximation with the uniform partition. The new obtained scheme is similar to the one given by Liao et al. (NMPDE 22 (2006), 600–616), while the major difference lies in no extension of source terms to outside the computational domain any longer. Compared with ones obtained by Zhao et al. (NMPDE 23 (2007), 949–959) and Dai (NMPDE 27 (2011), 436–446), numerical solutions at all mesh points including two boundary points are computed in our new scheme. The significant advantage of this work is to provide a rigorous analysis of convergence order for the obtained compact difference scheme using discrete energy method. The global accuracy is O2 + h4) in discrete maximum norm, although the spatial approximation order at the Neumann boundary is one lower than that for interior mesh points. The analytical techniques are important and can be successfully used to solve the open problem presented by Sun (NMPDE 25 (2009), 1320–1341), where analyzed theoretical convergence order of the scheme by Liao et al. (NMPDE 22 (2006), 600–616) is only O2 + h3.5) while the numerical accuracy is O2 + h4), and convergence order of theoretical analysis for the scheme by Zhao et al. (NMPDE 23 (2007), 949–959) is O2 + h2.5), while the actual numerical accuracy is O2 + h3). Following the procedure used for the new obtained difference scheme in this work, convergence orders of these two schemes can be proved rigorously to be O2 + h4) and O2 + h3), respectively. Meanwhile, extension to the case involving the nonlinear reaction term is also discussed, and the global convergence order O2 + h4) is proved. A compact ADI difference scheme for solving two‐dimensional case is derived. Finally, several examples are given to demonstrate the numerical accuracy of new obtained compact difference schemes. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

18.
In this paper, we consider two types of space-time fractional diffusion equations(STFDE) on a finite domain. The equation can be obtained from the standard diffusion equation by replacing the second order space derivative by a Riemann-Liouville fractional derivative of order β (1 < β ≤ 2), and the first order time derivative by a Caputo fractional derivative of order γ (0 < γ ≤ 1). For the 0 < γ < 1 case, we present two schemes to approximate the time derivative and finite element methods for the space derivative, the optimal convergence rate can be reached O(τ2?γ + h2) and O(τ2 + h2), respectively, in which τ is the time step size and h is the space step size. And for the case γ = 1, we use the Crank-Nicolson scheme to approximate the time derivative and obtain the optimal convergence rate O(τ2 + h2) as well. Some numerical examples are given and the numerical results are in good agreement with the theoretical analysis.  相似文献   

19.
In this paper, we study the convergence of a finite difference scheme on nonuniform grids for the solution of second-order elliptic equations with mixed derivatives and variable coefficients in polygonal domains subjected to Dirichlet boundary conditions. We show that the scheme is equivalent to a fully discrete linear finite element approximation with quadrature. It exhibits the phenomenon of supraconvergence, more precisely, for s ∈ [1,2] order O(h s )-convergence of the finite difference solution, and its gradient is shown if the exact solution is in the Sobolev space H 1+s (Ω). In the case of an equation with mixed derivatives in a domain containing oblique boundary sections, the convergence order is reduced to O(h 3/2?ε) with ε > 0 if u ∈ H 3(Ω). The second-order accuracy of the finite difference gradient is in the finite element context nothing else than the supercloseness of the gradient. For s ∈ {1,2}, the given error estimates are strictly local.  相似文献   

20.
In the paper, we propose a stabilized multiphysics finite element method with Crank–Nicolson scheme for a poroelasticity model. The method can eliminate the locking phenomenon and reveal the multi‐physical process. The lowest equal order finite element pair is used to reduce the computational cost. Furthermore, the method needs no constraint condition Δt = O(h2) and achieves optimal convergent order. Numerical tests are provided to illustrate the optimal accuracy and good performance in eliminating locking phenomenon of the method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号