首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
In this article, we study the semidiscrete H 1-Galerkin mixed finite element method for parabolic problems over rectangular partitions. The well-known optimal order error estimate in the L 2-norm for the flux is of order 𝒪(h k+1) (SIAM J. Numer. Anal. 35 (2), (1998), pp. 712–727), where k ≥ 1 is the order of the approximating polynomials employed in the Raviart–Thomas element. We derive a superconvergence estimate of order 𝒪(h k+3) between the H 1-Galerkin mixed finite element approximation and an appropriately defined local projection of the flux variable when k ≥ 1. A the new approximate solution for the flux with superconvergence of order 𝒪(h k+3) is realized via a postprocessing technique using local projection methods.  相似文献   

2.
Expanded mixed finite element approximation of nonlinear reaction-diffusion equations is discussed. The equations considered here are used to model the hydrologic and bio-geochemical phenomena. To linearize the mixed-method equations, we use a two-grid method involving a small nonlinear system on a coarse gird of size H and a linear system on a fine grid of size h. Error estimates are derived which demonstrate that the error is O(△t + h k+1 + H 2k+2 d/2 ) (k ≥ 1), where k is the degree of the approximating space for the primary variable and d is the spatial dimension. The above estimates are useful for determining an appropriate H for the coarse grid problems.  相似文献   

3.
In this article, a Crank–Nicolson linear finite volume element scheme is developed to solve a hyperbolic optimal control problem. We use the variational discretization technique for the approximation of the control variable. The optimal convergent order O(h2 + k2) is proved for the numerical solution of the control, state and adjoint‐state in a discrete L2‐norm. To derive this result, we also get the error estimate (convergent order O(h2 + k2)) of Crank–Nicolson finite volume element approximation for the second‐order hyperbolic initial boundary value problem. Numerical experiments are presented to verify the theoretical results.© 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 1331–1356, 2016  相似文献   

4.
In this paper, by using a new non-polynomial parameters cubic spline in space direction and compact finite difference in time direction, we get a class of new high accuracy scheme of O(τ4 + h2) and O(τ4 + h4) for solving telegraph equation if we suitably choose the cubic spline parameters. Meanwhile, stability condition of the difference scheme has been carried out. Finally, numerical examples are used to illustrate the efficiency of the new difference scheme.  相似文献   

5.
We derive superconvergence result for H 1-Galerkin mixed finite element method for second-order elliptic equations over rectangular partitions. Compared to standard mixed finite element procedure, the method is not subject to the Ladyzhenskaya–Bab?ska–Brezzi (LBB) condition and the approximating finite element spaces are allowed to be of different polynomial degrees. Superconvergence estimate of order 𝒪(h k+3), where k ≥ 1 is the order of the approximating polynomials employed in the Raviart–Thomas elements, is established for the flux via a postprocessing technique.  相似文献   

6.
The aim of this article is to analyze a new compact finite difference method (CFDM) for solving the generalized regularized long wave (GRLW) equation. This method leads to a system of linear equations involving tridiagonal matrices and the rate of convergence of the method is of order O(k 2 + h 4) where k and h are mesh sizes of time and space variables, respectively. Stability analysis of the method is investigated by the energy method and an error estimate is given. The propagation of single solitons and interaction of two solitary waves are applied to validate the method which is found to be accurate and efficient. Three invariants of the motion are evaluated to determine conservation properties of the method.  相似文献   

7.
Summary It is shown that a simple asymptotic correction technique of Paine, de Hoog and Anderssen reduces the error in the estimate of thekth eigenvalue of a regular Sturm-Liouville problem obtained by the finite element method, with linear hat functions and mesh lengthh, fromO(k 4 h 2) toO(k h 2). The result still holds when the matrix elements are evaluated by Simpson's rule, but if the trapezoidal rule is used the error isO(k 2 h 2). Numerical results demonstrate the usefulness of the correction even for low values ofk.  相似文献   

8.
In this paper, we consider the local discontinuous Galerkin (LDG) finite element method for one-dimensional linear time-fractional Tricomi-type equation (TFTTE), which is obtained from the standard one-dimensional linear Tricomi-type equation by replacing the first-order time derivative with a fractional derivative (of order α, with 1?<?α?≤?2). The proposed LDG is based on LDG finite element method for space and finite difference method for time. We prove that the method is unconditionally stable, and the numerical solution converges to the exact one with order O(h k?+?1?+?τ 2), where h, τ and k are the space step size, time step size, polynomial degree, respectively. The comparison of the LDG results with the exact solutions is made, numerical experiments reveal that the LDG is very effective.  相似文献   

9.
For rectangular finite element, we give a superconvergence method by SPR technique based on the generalization of a new ultraconvergence record and the sharp Green function estimates, by which we prove that the derivative has ultra-convergence of order O(h k+3) (k ⩾ 3 being odd) and displacement has order of O(h k+4) (k ⩾ 4 being even) at the locally symmetry points.   相似文献   

10.
A linearized three‐step backward differential formula (BDF) Galerkin finite element method (FEM) is developed for nonlinear Sobolev equation with bilinear element. Temporal error and spatial error are discussed through introducing a time‐discrete system. Solutions of the time‐discrete system are bounded in H2‐norm by the temporal error. Superconvergence results of order O(h2 + τ3) in H1‐norm for the original variable are deduced based on the spatial error. Some new tricks are utilized to get higher order of the temporal error and the spatial error. At last, two numerical examples are provided to support the theoretical analysis. Here, h is the subdivision parameter, and τ is the time step.  相似文献   

11.
In this article, we consider the finite element methods (FEM) for Grwünwald–Letnikov time-fractional diffusion equation, which is obtained from the standard two-dimensional diffusion equation by replacing the first-order time derivative with a fractional derivative (of order α, with 0?h r+1?+?τ2-α), where h, τ and r are the space step size, time step size and polynomial degree, respectively. A numerical example is presented to verify the order of convergence.  相似文献   

12.
In this paper, we study the convergence of a finite difference scheme on nonuniform grids for the solution of second-order elliptic equations with mixed derivatives and variable coefficients in polygonal domains subjected to Dirichlet boundary conditions. We show that the scheme is equivalent to a fully discrete linear finite element approximation with quadrature. It exhibits the phenomenon of supraconvergence, more precisely, for s ∈ [1,2] order O(h s )-convergence of the finite difference solution, and its gradient is shown if the exact solution is in the Sobolev space H 1+s (Ω). In the case of an equation with mixed derivatives in a domain containing oblique boundary sections, the convergence order is reduced to O(h 3/2?ε) with ε > 0 if u ∈ H 3(Ω). The second-order accuracy of the finite difference gradient is in the finite element context nothing else than the supercloseness of the gradient. For s ∈ {1,2}, the given error estimates are strictly local.  相似文献   

13.
In this article, we consider the finite volume element method for the second‐order nonlinear elliptic problem and obtain the H1 and W1, superconvergence estimates between the solution of the finite volume element method and that of the finite element method, which reveal that the finite volume element method is in close relationship with the finite element method. With these superconvergence estimates, we establish the Lp and W1,p (2 < p ≤ ∞) error estimates for the finite volume element method for the second‐order nonlinear elliptic problem. © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2007  相似文献   

14.
A multilevel finite element method in space‐time for the two‐dimensional nonstationary Navier‐Stokes problem is considered. The method is a multi‐scale method in which the fully nonlinear Navier‐Stokes problem is only solved on a single coarsest space‐time mesh; subsequent approximations are generated on a succession of refined space‐time meshes by solving a linearized Navier‐Stokes problem about the solution on the previous level. The a priori estimates and error analysis are also presented for the J‐level finite element method. We demonstrate theoretically that for an appropriate choice of space and time mesh widths: hjh, kjk, j = 2, …, J, the J‐level finite element method in space‐time provides the same accuracy as the one‐level method in space‐time in which the fully nonlinear Navier‐Stokes problem is solved on a final finest space‐time mesh. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005  相似文献   

15.
A low order anisotropic nonconforming rectangular finite element method for the convection-diffusion problem with a modified characteristic finite element scheme is studied in this paper. The O(h2) order error estimate in L2-norm with respect to the space, one order higher than the expanded characteristic-mixed finite element scheme with order O(h), and the same as the conforming case for a modified characteristic finite element scheme under regular meshes, is obtained by use of some distinct properties of the interpolation operator and the mean value technique, instead of the so-called elliptic projection, which is an indispensable tool in the convergence analysis of the previous literature. Lastly, some numerical results of the element are provided to verify our theoretical analysis.  相似文献   

16.
We consider a family of fully discrete finite element schemes for solving a viscous wave equation, where the time integration is based on the Newmark method. A rigorous stability analysis based on the energy method is developed. Optimal error estimates in both time and space are obtained. For sufficiently smooth solutions, it is demonstrated that the maximal error in the L 2-norm over a finite time interval converges optimally as O(h p+1 + Δt s ), where p denotes the polynomial degree, s = 1 or 2, h the mesh size, and Δt the time step.  相似文献   

17.
In this study, we developed the methods based on nonpolynomial cubic spline for numerical solution of second‐order nonhomogeneous hyperbolic partial differential equation. Using nonpolynomial cubic spline in space and finite difference in time directions, we obtained the implicit three level methods of O(k2 + h2) and O(k2 + h4). The proposed methods are applicable to the problems having singularity at x = 0, too. Stability analysis of the presented methods have been carried out. The presented methods are applied to the nonhomogeneous examples of different types. Numerical comparison with Mohanty's method (Mohanty, Appl Math Comput, 165 (2005), 229–236) shows the superiority of our presented schemes. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2007  相似文献   

18.
The cable equation is one of the most fundamental equations for modeling neuronal dynamics. These equations can be derived from the Nernst-Planck equation for electro-diffusion in smooth homogeneous cylinders. Fractional cable equations are introduced to model electrotonic properties of spiny neuronal dendrites. In this paper, a Galerkin finite element method(GFEM) is presented for the numerical simulation of the fractional cable equation(FCE) involving two integro-differential operators. The proposed method is based on a semi-discrete finite difference approximation in time and Galerkin finite element method in space. We prove that the numerical solution converges to the exact solution with order O(τ+hl+1) for the lth-order finite element method. Further, a novel Galerkin finite element approximation for improving the order of convergence is also proposed. Finally, some numerical results are given to demonstrate the theoretical analysis. The results show that the numerical solution obtained by the improved Galerkin finite element approximation converges to the exact solution with order O(τ2+hl+1).  相似文献   

19.
Nonconforming finite element method is studied for a linearized backward fully-discrete scheme of the Ginzburg–Landau equation with the quadrilateral element. The unconditional convergent result of order O(h + τ) in the broken H1-norm is deduced rigorously based on a splitting technique, by which the ratio between the subdivision parameter h and the time step τ is removed. Furthermore, numerical results are provided to confirm the theoretical analysis. The analysis developed herein can be regarded as a framework to deal with the unconditional convergent analysis of the Ginzburg–Landau equation for other known low order nonconforming elements.  相似文献   

20.
This is the further work on compact finite difference schemes for heat equation with Neumann boundary conditions subsequent to the paper, [Sun, Numer Methods Partial Differential Equations (NMPDE) 25 (2009), 1320–1341]. A different compact difference scheme for the one‐dimensional linear heat equation is developed. Truncation errors of the proposed scheme are O2 + h4) for interior mesh point approximation and O2 + h3) for the boundary condition approximation with the uniform partition. The new obtained scheme is similar to the one given by Liao et al. (NMPDE 22 (2006), 600–616), while the major difference lies in no extension of source terms to outside the computational domain any longer. Compared with ones obtained by Zhao et al. (NMPDE 23 (2007), 949–959) and Dai (NMPDE 27 (2011), 436–446), numerical solutions at all mesh points including two boundary points are computed in our new scheme. The significant advantage of this work is to provide a rigorous analysis of convergence order for the obtained compact difference scheme using discrete energy method. The global accuracy is O2 + h4) in discrete maximum norm, although the spatial approximation order at the Neumann boundary is one lower than that for interior mesh points. The analytical techniques are important and can be successfully used to solve the open problem presented by Sun (NMPDE 25 (2009), 1320–1341), where analyzed theoretical convergence order of the scheme by Liao et al. (NMPDE 22 (2006), 600–616) is only O2 + h3.5) while the numerical accuracy is O2 + h4), and convergence order of theoretical analysis for the scheme by Zhao et al. (NMPDE 23 (2007), 949–959) is O2 + h2.5), while the actual numerical accuracy is O2 + h3). Following the procedure used for the new obtained difference scheme in this work, convergence orders of these two schemes can be proved rigorously to be O2 + h4) and O2 + h3), respectively. Meanwhile, extension to the case involving the nonlinear reaction term is also discussed, and the global convergence order O2 + h4) is proved. A compact ADI difference scheme for solving two‐dimensional case is derived. Finally, several examples are given to demonstrate the numerical accuracy of new obtained compact difference schemes. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号