首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23927篇
  免费   974篇
  国内免费   140篇
化学   17048篇
晶体学   198篇
力学   484篇
数学   3054篇
物理学   4257篇
  2023年   175篇
  2022年   151篇
  2021年   284篇
  2020年   485篇
  2019年   470篇
  2018年   316篇
  2017年   269篇
  2016年   674篇
  2015年   577篇
  2014年   687篇
  2013年   1175篇
  2012年   1566篇
  2011年   1743篇
  2010年   979篇
  2009年   828篇
  2008年   1441篇
  2007年   1356篇
  2006年   1346篇
  2005年   1245篇
  2004年   1094篇
  2003年   827篇
  2002年   684篇
  2001年   259篇
  2000年   237篇
  1999年   202篇
  1998年   211篇
  1997年   291篇
  1996年   300篇
  1995年   267篇
  1994年   295篇
  1993年   286篇
  1992年   249篇
  1991年   180篇
  1990年   211篇
  1989年   179篇
  1988年   188篇
  1987年   172篇
  1986年   160篇
  1985年   273篇
  1984年   259篇
  1983年   178篇
  1982年   201篇
  1981年   184篇
  1980年   181篇
  1979年   170篇
  1978年   195篇
  1977年   181篇
  1976年   136篇
  1975年   135篇
  1974年   157篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.

A more thorough understanding of the properties of bulk material structures in solid–liquid separation processes is essential to understand better and optimize industrially established processes, such as cake filtration, whose process outcome is mainly dependent on the properties of the bulk material structure. Here, changes of bulk properties like porosity and permeability can originate from local variations in particle size, especially for non-spherical particles. In this study, we mix self-similar fractions of crushed, irregularly shaped Al2O3 particles (20 to 90 µm and 55 to 300 µm) to bimodal distributions. These mixtures vary in volume fraction of fines (0, 20, 30, 40, 50, 60 and 100 vol.%). The self-similarity of both systems serves the improved parameter correlation in the case of multimodal distributed particle systems. We use nondestructive 3D X-ray microscopy to capture the filter cake microstructure directly after mechanical dewatering, whereby we give particular attention to packing structure and particle–particle relationships (porosity, coordination number, particle size and corresponding hydraulic isolated liquid areas). Our results reveal widely varying distributions of local porosity and particle contact points. An average coordination number (here 5.84 to 6.04) is no longer a sufficient measure to describe the significant bulk porosity variation (in our case, 40 and 49%). Therefore, the explanation of the correlation is provided on a discrete particle level. While individual particles?<?90 µm had only two or three contacts, others?>?100 µm took up to 25. Due to this higher local coordination number, the liquid load of corresponding particles (liquid volume/particle volume) after mechanical dewatering increases from 0.48 to 1.47.

  相似文献   
2.
Low-pressure gas discharge plasmas are known to be strongly affected by the presence of small dust particles. This issue plays a role in the investigations of dust particle-forming plasmas, where the dust-induced instabilities may affect the properties of synthesized dust particles. Also, gas discharges with large amounts of microparticles are used in microgravity experiments, where strongly coupled subsystems of charged microparticles represent particle-resolved models of liquids and solids. In this field, deep understanding of dust–plasma interactions is required to construct the discharge configurations which would be able to model the desired generic condensed matter physics as well as, in the interpretation of experiments, to distinguish the plasma phenomena from the generic condensed matter physics phenomena. In this review, we address only physical aspects of dust–plasma interactions, that is, we always imply constant chemical composition of the plasma as well as constant size of the dust particles. We also restrict the review to two discharge types: dc discharge and capacitively coupled rf discharge. We describe the experimental methods used in the investigations of dust–plasma interactions and show the approaches to numerical modelling of the gas discharge plasmas with large amounts of dust. Starting from the basic physical principles governing the dust–plasma interactions, we discuss the state-of-the-art understanding of such complicated, discharge-type-specific phenomena as dust-induced stratification and transverse instability in a dc discharge or void formation and heartbeat instability in an rf discharge.  相似文献   
3.
Journal of Optimization Theory and Applications - A composite control law for stabilizing a small-scale helicopter during hover flight mode is proposed in this paper. The proposed method is...  相似文献   
4.
Annals of Operations Research - Selecting a vegetation layer design goes along with determining its future irrigation need. Therefore, it is essential to take a design decision that is minimising...  相似文献   
5.
The first diastereo- and enantioselective cyclopropanation reactions of electron-deficient allenes with donor-acceptor and diacceptor diazo reagents are described. The desired enantioenriched alkylidenecyclopropanes (ACPs) were obtained in high yields with high diastereo- and enantioselectivities in the presence of Rh2((S)-TCPTAD)4 or Rh2((R)-BTPCP)4 catalysts (up to 95 % yield, >95 : 5 d.r. and 99 : 1 e.r.). This methodology gave a direct access to ACPs bearing multiple electron-deficient substituents and allows to further expand the availability of ACPs chemistry. Interestingly, during the examination of the scope of this reaction, the asymmetric intramolecular C−H insertion reaction into tert-butyl group was observed as a side reaction with up to 94 : 6 e.r.  相似文献   
6.
The development of small-molecule covalent inhibitors and probes continuously pushes the rapidly evolving field of chemical biology forward. A key element in these molecular tool compounds is the “electrophilic trap” that allows a covalent linkage with the target enzyme. The reactivity of this entity needs to be well balanced to effectively trap the desired enzyme, while not being attacked by off-target nucleophiles. Here we investigate the intrinsic reactivity of substrates containing a class of widely used electrophilic traps, the three-membered heterocycles with a nitrogen (aziridine), phosphorus (phosphirane), oxygen (epoxide) or sulfur atom (thiirane) as heteroatom. Using quantum chemical approaches, we studied the conformational flexibility and nucleophilic ring opening of a series of model substrates, in which these electrophilic traps are mounted on a cyclohexene scaffold (C6H10Y with Y=NH, PH, O, S). It was revealed that the activation energy of the ring opening does not necessarily follow the trend that is expected from C−Y leaving-group bond strength, but steeply decreases from Y=NH, to PH, to O, to S. We illustrate that the HOMONu–LUMOSubstrate interaction is an all-important factor for the observed reactivity. In addition, we show that the activation energy of aziridines and phosphiranes can be tuned far below that of the corresponding epoxides and thiiranes by the addition of proper electron-withdrawing ring substituents. Our results provide mechanistic insights to rationally tune the reactivity of this class of popular electrophilic traps and can guide the experimental design of covalent inhibitors and probes for enzymatic activity.  相似文献   
7.
A series of phosphorescent bimetallic platinum(II) complexes is presented, which were synthesized by the combination of bidentate cyclometalated N-heterocyclic carbene ligands and different bridging diphenylformamidinates. The complexes were characterized by standard techniques and additionally two solid-state structures could be obtained. Photoluminescence measurements revealed the strong emissive behavior of the compounds with quantum yields of up to 90 % and emission lifetimes of approx. 2 μs. The effect of the substitution pattern in the bridging ligands on the structural and photophysical properties of the complexes was examined in detail and rationalized by density functional theory calculations (PBE0/6-311G*).  相似文献   
8.
Signal Amplification By Reversible Exchange in SHield Enabled Alignment Transfer (SABRE-SHEATH) is investigated to achieve rapid hyperpolarization of 13C1 spins of [1-13C]pyruvate, using parahydrogen as the source of nuclear spin order. Pyruvate exchange with an iridium polarization transfer complex can be modulated via a sensitive interplay between temperature and co-ligation of DMSO and H2O. Order-unity 13C (>50 %) polarization of catalyst-bound [1-13C]pyruvate is achieved in less than 30 s by restricting the chemical exchange of [1-13C]pyruvate at lower temperatures. On the catalyst bound pyruvate, 39 % polarization is measured using a 1.4 T NMR spectrometer, and extrapolated to >50 % at the end of build-up in situ. The highest measured polarization of a 30-mM pyruvate sample, including free and bound pyruvate is 13 % when using 20 mM DMSO and 0.5 M water in CD3OD. Efficient 13C polarization is also enabled by favorable relaxation dynamics in sub-microtesla magnetic fields, as indicated by fast polarization buildup rates compared to the T1 spin-relaxation rates (e. g., ∼0.2 s−1 versus ∼0.1 s−1, respectively, for a 6 mM catalyst-[1-13C]pyruvate sample). Finally, the catalyst-bound hyperpolarized [1-13C]pyruvate can be released rapidly by cycling the temperature and/or by optimizing the amount of water, paving the way to future biomedical applications of hyperpolarized [1-13C]pyruvate produced via comparatively fast and simple SABRE-SHEATH-based approaches.  相似文献   
9.
Cannabis sativa L., a low-cost, fast-growing herbaceous plant, is seeing a resurgence in widespread cultivation as a result of new policies and product drive. Its biodegradable and environmentally benign nature coupled with its high specific surface area and three-dimensional hierarchal structure makes it an excellent candidate for use as a biomass-derived carbon material for electrochemical power sources. It is proposed that this ‘wonder crop’ could have an important role in the energy transition by providing high-functioning carbon-based materials for electrochemistry. In this article, all instances of C. sativa usage in batteries, fuel cells and supercapacitors are discussed with a focus on highlighting the high capacity, rate capability, capacitance, current density and half-wave potential that can be achieved with its utilisation in the field.  相似文献   
10.
We have characterized a sulfobetaine stationary phase based on 1.7 μm ethylene-bridged hybrid organic–inorganic particles, which is intended for use in hydrophilic interaction chromatography. The efficiency of a column packed with this material was determined as a function of flow rate, demonstrating a minimum reduced plate height of 2.4. The batch-to-batch reproducibility was assessed using the separation of a mixture of acids, bases, and neutrals. We compared the retention and selectivity of the hybrid sulfobetaine stationary phase to that of several benchmark materials. The hybrid sulfobetaine material gave strong retention for polar neutrals and high selectivity for methyl groups, hydroxy groups, and configurational isomers. Large differences in cation and anion retention were observed among the columns. We characterized the acid and base stability of the hybrid sulfobetaine stationary phase, using accelerated tests at pH 1.3 and 11.0, both at 70°C. The results support a recommended pH range of 2–10. We also investigated the performance of columns packed with this material for metal-sensitive analytes, comparing conventional stainless steel column hardware to hardware that incorporates hybrid surface technology to mitigate interactions with metal surfaces. Compared to the conventional columns, the hybrid surface technology columns showed a greatly improved peak shape.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号