首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this article, two recent proposed compact schemes for the heat conduction problem with Neumann boundary conditions are analyzed. The first difference scheme was proposed by Zhao, Dai, and Niu (Numer Methods Partial Differential Eq 23, (2007), 949–959). The unconditional stability and convergence are proved by the energy methods. The convergence order is O2 + h2.5) in a discrete maximum norm. Numerical examples demonstrate that the convergence order of the scheme can not exceeds O2 + h3). An improved compact scheme is presented, by which the approximate values at the boundary points can be obtained directly. The second scheme was given by Liao, Zhu, and Khaliq (Methods Partial Differential Eq 22, (2006), 600–616). The unconditional stability and convergence are also shown. By the way, it is reported how to avoid computing the values at the fictitious points. Some numerical examples are presented to show the theoretical results. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

2.
In the article, two linearized finite difference schemes are proposed and analyzed for the Benjamin–Bona–Mahony–Burgers (BBMB) equation. For the construction of the two-level scheme, the nonlinear term is linearized via averaging k and k + 1 floor, we prove unique solvability and convergence of numerical solutions in detail with the convergence order O(τ2 + h2) . For the three-level linearized scheme, the extrapolation technique is utilized to linearize the nonlinear term based on ψ function. We obtain the conservation, boundedness, unique solvability and convergence of numerical solutions with the convergence order O(τ2 + h2) at length. Furthermore, extending our work to the BBMB equation with the nonlinear source term is considered and a Newton linearized method is inserted to deal with it. The applicability and accuracy of both schemes are demonstrated by numerical experiments.  相似文献   

3.
In this article, a conservative compact difference scheme is presented for the periodic initial‐value problem of Klein–Gordon–Schrödinger equation. On the basis of some inequalities about norms and the priori estimates, convergence of the difference solution is proved with order O(h42) in maximum norm. Numerical experiments demonstrate the accuracy and efficiency of the compact scheme. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

4.
The coupled nonlinear Schrödinger–Boussinesq (SBq) equations describe the nonlinear development of modulational instabilities associated with Langmuir field amplitude coupled to intense electromagnetic wave in dispersive media such as plasmas. In this paper, we present a conservative compact difference scheme for the coupled SBq equations and analyze the conservative property and the existence of the scheme. Then we prove that the scheme is convergent with convergence order O(τ2 + h4) in L‐norm and is stable in L‐norm. Numerical results verify the theoretical analysis.  相似文献   

5.
The numerical simulation of the dynamics of the molecular beam epitaxy (MBE) growth is considered in this article. The governing equation is a nonlinear evolutionary equation that is of linear fourth order derivative term and nonlinear second order derivative term in space. The main purpose of this work is to construct and analyze two linearized finite difference schemes for solving the MBE model. The linearized backward Euler difference scheme and the linearized Crank‐Nicolson difference scheme are derived. The unique solvability, unconditional stability and convergence are proved. The linearized Euler scheme is convergent with the convergence order of O(τ + h2) and linearized Crank‐Nicolson scheme is convergent with the convergence order of O2 + h2) in discrete L2‐norm, respectively. Numerical stability with respect to the initial conditions is also obtained for both schemes. Numerical experiments are carried out to demonstrate the theoretical analysis. © 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2011  相似文献   

6.
In this paper, the finite difference scheme is developed for the time-space fractional diffusion equation with Dirichlet and fractional boundary conditions. The time and space fractional derivatives are considered in the senses of Caputo and Riemann-Liouville, respectively. The stability and convergence of the proposed numerical scheme are strictly proved, and the convergence order is O(τ2−α+h2). Numerical experiments are performed to confirm the accuracy and efficiency of our scheme.  相似文献   

7.
In this paper, a compact finite difference method is proposed for the solution of time fractional advection-dispersion equation which appears extensively in fluid dynamics. In this approach the time fractional derivative of mentioned equation is approximated by a scheme of order O(τ 2???α ), 0?<?α?<?1, and spatial derivatives are replaced with a fourth order compact finite difference scheme. We will prove the unconditional stability and solvability of proposed scheme. Also we show that the method is convergence with convergence order O(τ 2???α ?+?h 4). Numerical examples confirm the theoretical results and high accuracy of proposed scheme.  相似文献   

8.
In this article, a compact finite difference scheme for the coupled nonlinear Schrödinger equations is studied. The scheme is proved to conserve the original conservative properties. Unconditional stability and convergence in maximum norm with order O(τ2 + h4) are also proved by the discrete energy method. Finally, numerical results are provided to verify the theoretical analysis.  相似文献   

9.
In this article, we present a numerical simulation of one‐dimensional problem of quasi‐static contact with an elastic obstacle. A finite difference scheme is derived by the method of reduction of order on uniform meshes. The stability and convergence are proved. The convergence order is of O2 + h2), where τ and h are the time step size and the space step size, respectively. Some numerical examples demonstrate the theoretical results. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005  相似文献   

10.
In this paper, the fourth-order parabolic equations with different boundary value conditions are studied. Six kinds of boundary value conditions are proposed. Several numerical differential formulae for the fourth-order derivative are established by the quartic interpolation polynomials and their truncation errors are given with the aid of the Taylor expansion with the integral remainders. Effective difference schemes are presented for the third Dirichlet boundary value problem, the first Neumann boundary value problem and the third Neumann boundary value problem, respectively. Some new embedding inequalities on the discrete function spaces are presented and proved. With the method of energy analysis, the unique solvability, unconditional stability and unconditional convergence of the difference schemes are proved. The convergence orders of derived difference schemes are all O(τ2 + h2) in appropriate norms. Finally, some numerical examples are provided to confirm the theoretical results.  相似文献   

11.
Liao  Feng  Zhang  Luming  Wang  Tingchun 《Numerical Algorithms》2020,85(4):1335-1363

In this paper, we study two compact finite difference schemes for the Schrödinger-Boussinesq (SBq) equations in two dimensions. The proposed schemes are proved to preserve the total mass and energy in the discrete sense. In our numerical analysis, besides the standard energy method, a “cut-off” function technique and a “lifting” technique are introduced to establish the optimal H1 error estimates without any restriction on the grid ratios. The convergence rate is proved to be of O(τ2 + h4) with the time step τ and mesh size h. In addition, a fast finite difference solver is designed to speed up the numerical computation of the proposed schemes. The numerical results are reported to verify the error estimates and conservation laws.

  相似文献   

12.
In this paper, by using a new non-polynomial parameters cubic spline in space direction and compact finite difference in time direction, we get a class of new high accuracy scheme of O(τ4 + h2) and O(τ4 + h4) for solving telegraph equation if we suitably choose the cubic spline parameters. Meanwhile, stability condition of the difference scheme has been carried out. Finally, numerical examples are used to illustrate the efficiency of the new difference scheme.  相似文献   

13.
In this paper, we study the convergence of a finite difference scheme on nonuniform grids for the solution of second-order elliptic equations with mixed derivatives and variable coefficients in polygonal domains subjected to Dirichlet boundary conditions. We show that the scheme is equivalent to a fully discrete linear finite element approximation with quadrature. It exhibits the phenomenon of supraconvergence, more precisely, for s ∈ [1,2] order O(h s )-convergence of the finite difference solution, and its gradient is shown if the exact solution is in the Sobolev space H 1+s (Ω). In the case of an equation with mixed derivatives in a domain containing oblique boundary sections, the convergence order is reduced to O(h 3/2?ε) with ε > 0 if u ∈ H 3(Ω). The second-order accuracy of the finite difference gradient is in the finite element context nothing else than the supercloseness of the gradient. For s ∈ {1,2}, the given error estimates are strictly local.  相似文献   

14.
The two-level linearized and local uncoupled spatial second order and compact difference schemes are derived for the two-component evolutionary system of nonhomogeneous Korteweg-de Vries equations. It is shown by the mathematical induction that these two schemes are uniquely solvable and convergent in a discrete L norm with the convergence order of O(τ2 + h2) and O(τ2 + h4), respectively, where τ and h are the step sizes in time and space. Three numerical examples are given to confirm the theoretical results.  相似文献   

15.
This article is devoted to the study of high order accuracy difference methods for the Cahn-Hilliard equation.A three level linearized compact difference scheme is derived.The unique solvability and unconditional convergence of the difference solution are proved.The convergence order is O(τ 2 + h 4 ) in the maximum norm.The mass conservation and the non-increase of the total energy are also verified.Some numerical examples are given to demonstrate the theoretical results.  相似文献   

16.
The convergence of finite element methods for linear elliptic boundary value problems of second and forth order is well understood. In this article, we introduce finite element approximations of some linear semi-elliptic boundary value problem of mixed order on a two-dimensional rectangular domain Q. The equation is of second order in one direction and forth order in the other and appears in the optimal control of parabolic partial differential equations if one eliminates the control and the state (or the adjoint state) in the first order optimality conditions. We establish a regularity result and estimate for the finite element error of conforming approximations of this equation. The finite elements in use have a tensor product structure, in one dimension we use linear, quadratic or cubic Lagrange elements in the other dimension cubic Hermite elements. For these elements, we prove the error bound O(h 2 + τ k ) in the energy norm and O((h 2 + τ k )(h 2 + τ)) in the L 2(Q)-norm.  相似文献   

17.
The nonconforming combination of Ritz-Galerkin and finite difference methods is presented for solving elliptic boundary value problems with singularities. The Ritz-Galerkin method is used in the subdomains including singularities, the finite difference method is used in the rest of the solution domain. Moreover, on the common boundary of two regions where two different methods are used, the continuity conditions are constrained only on the nodes of difference grids. Theoretical analysis and numerical experiments have shown that average errors of numerical solutions and their generalized derivatives can reach the convergence rate O(h2-δ), where h is the mesh spacing of uniform difference grids, and δ is an arbitrarily small, positive number. This convergence rate is better than O(h), obtained by the nonconforming combination of the Ritz-Galerkin and finite element methods.  相似文献   

18.
A linearized compact difference scheme is presented for a class of nonlinear delay partial differential equations with initial and Dirichlet boundary conditions. The unique solvability, unconditional convergence and stability of the scheme are proved. The convergence order is O(τ2+h4)O(τ2+h4) in LL norm. Finally, a numerical example is given to support the theoretical results.  相似文献   

19.
In this article, a Crank–Nicolson linear finite volume element scheme is developed to solve a hyperbolic optimal control problem. We use the variational discretization technique for the approximation of the control variable. The optimal convergent order O(h2 + k2) is proved for the numerical solution of the control, state and adjoint‐state in a discrete L2‐norm. To derive this result, we also get the error estimate (convergent order O(h2 + k2)) of Crank–Nicolson finite volume element approximation for the second‐order hyperbolic initial boundary value problem. Numerical experiments are presented to verify the theoretical results.© 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 1331–1356, 2016  相似文献   

20.
In this paper we present a multistep difference scheme for the problem of miscible displacement of incompressible fluid flow in porous media. The discretization involves a three-level time scheme based on the characteristic method and a five-point finite difference scheme for space discretization. We prove that the convergence is of order O(h2+(Δt)2), which is in contrast to the convergence of order O(ht) proved for a singlestep characteristic with the same space discretization. Numerical experiments demonstrate the stability and second-order convergence of the scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号