首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
In this paper, an SIR epidemic model with saturation incidence and a time delay describing a constant infectious period is investigated. By analyzing the corresponding characteristic equations, the local stability of a disease-free equilibrium and an endemic equilibrium is established. When the basic reproduction number is greater than unity, it is proved that the disease is uniformly persistent in the population, and explicit formulae are obtained to estimate the eventual lower bound of the fraction of infectious individuals. By comparison arguments, it is proved that if the basic reproduction number is less than unity, the disease-free equilibrium is globally asymptotically stable. When the basic reproduction number is greater than unity, by means of an iteration technique, sufficient conditions are derived for the global attractiveness of the endemic equilibrium. Numerical simulations are carried out to illustrate the main results.  相似文献   

2.
This paper is devoted to a reaction-diffusion system for a SIR epidemic model with time delay and incidence rate. Firstly, the nonnegativity and boundedness of solutions determined by nonnegative initial values are obtained. Secondly, the existence and local stability of the disease-free equilibrium as well as the endemic equilibrium are investigated by analyzing the characteristic equations. Finally, the global asymptotical stability are obtained via Lyapunov functionals.  相似文献   

3.
研究了一类带时滞的SIR传染病模型,利用多项式判别系统研究了无病平衡点的全时滞稳定性,利用超越函数零点判别法研究了正平衡点的局部渐近稳定性.  相似文献   

4.
The limitation of contact between susceptible and infected individuals plays an important role in decreasing the transmission of infectious diseases. Prevention and control strategies contribute to minimizing the transmission rate. In this paper, we propose SIR epidemic model with delayed control strategies, in which delay describes the response and effect time. We study the dynamic properties of the epidemic model from three aspects: steady states, stability and bifurcation. By eliminating the existence of limit cycles, we establish the global stability of the endemic equilibrium, when the delay is ignored. Further, we find that the delayed effect on the infection rate does not affect the stability of the disease-free equilibrium, but it can destabilize the endemic equilibrium and bring Hopf bifurcation. Theoretical results show that the prevention and control strategies can effectively reduce the final number of infected individuals in the population. Numerical results corroborate the theoretical ones.  相似文献   

5.
An SIR epidemic model with time delay, information variable and saturated incidence rate, where the susceptibles are assumed to satisfy the logistic equation and the incidence term, is of saturated form with the susceptibles. This model exhibits two bifurcations, one is transcritical bifurcation and the other is Hopf bifurcation. The local and global stability of endemic equilibrium is also discussed. Finally, numerical simulations are carried out to explain the mathematical conclusions.  相似文献   

6.
GLOBAL STABILITY OF AN SIRS EPIDEMIC MODEL WITH DELAYS   总被引:2,自引:0,他引:2  
In this article, an SIRS epidemic model spread by vectors (mosquitoes) which have an incubation time to become infectious is formulated. It is shown that a disease-free equilibrium point is globally stable if no endemic equilibrium point exists. Further, the endemic equilibrium point (if it exists) is globally stable with a respect "weak delay". Some known results are generalized.  相似文献   

7.
We derive a discretized SIR epidemic model with pulse vaccination and time delay from the original continuous model. The sufficient conditions for global attractivity of an infection-free periodic solution and permanence of our model are obtained. Improving discretization, our results are corresponding to those in the original continuous model.  相似文献   

8.
We derive a discretized SIR epidemic model with pulse vaccination and time delay from the original continuous model. The sufficient conditions for global attractivity of an infection-free periodic solution and permanence of our model are obtained. Improving discretization, our results are corresponding to those in the original continuous model.  相似文献   

9.
We describe an SIR epidemic model with a discrete time lag, analyse the local stability of its equilibria as well as the effects of delay on the reproduction number and on the dynamical behaviour of the system. The model has two equilibria—a necessary condition for local asymptotic stability is given. The proofs are based on linearization and the application of Lyapunov functional approach. An upper bound of the critical time delay for which the model remains valid is derived. Numerical simulations are carried out to illustrate the effect of time delay which tends to reduce the epidemic threshold. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
研究具有Logistic增长和病程的SIR流行病模型.运用微分、积分方程理论,得到再生数R0<1时,无病平衡点E0是全局渐近稳定的;而当R0>1时,地方病平衡点E*是局部渐近稳定的.  相似文献   

11.
In this paper, we study the dynamics of an SIR epidemic model with a logistic process and a distributed time delay. We first show that the attractivity of the disease-free equilibrium is completely determined by a threshold R0. If R0?1, then the disease-free equilibrium is globally attractive and the disease always dies out. Otherwise, if R0>1, then the disease-free equilibrium is unstable, and meanwhile there exists uniquely an endemic equilibrium. We then prove that for any time delay h>0, the delayed SIR epidemic model is permanent if and only if there exists an endemic equilibrium. In other words, R0>1 is a necessary and sufficient condition for the permanence of the epidemic model. Numerical examples are given to illustrate the theoretical results. We also make a distinction between the dynamics of the distributed time delay system and the discrete time delay system.  相似文献   

12.
讨论了一类带有时滞的SE IS流行病模型,并讨论了阈值、平衡点和稳定性.模型是一个具有确定潜伏期的时滞微分方程模型,在这里我们得到了各类平衡点存在条件的阈值R0;当R0<1时,只有无病平衡点P0,且是全局渐近稳定的;当R0>1时,除无病平衡点外还存在唯一的地方病平衡点Pe,且该平衡点是绝对稳定的.  相似文献   

13.
Epidemic models are very important in today''s analysis of diseases. In this paper, we propose and analyze an epidemic model incorporating quarantine, latent, media coverage and time delay. We analyze the local stability of either the disease-free and endemic equilibrium in terms of the basic reproduction number $\mathcal{R}_{0}$ as a threshold parameter. We prove that if $\mathcal{R}_{0}<1,$ the time delay in media coverage can not affect the stability of the disease-free equilibrium and if $\mathcal{R}_{0}>1$, the model has at least one positive endemic equilibrium, the stability will be affected by the time delay and some conditions for Hopf bifurcation around infected equilibrium to occur are obtained by using the time delay as a bifurcation parameter. We illustrate our results by some numerical simulations such that we show that a proper application of quarantine plays a critical role in the clearance of the disease, and therefore a direct contact between people plays a critical role in the transmission of the disease.  相似文献   

14.
In this paper, a new delay SIR epidemic model with pulse vaccination and incubation times is considered. We obtain an infection-free semi-trivial periodic solution and establish the sufficient conditions for the global attractivity of the semi-trivial periodic solution. By use of new computational techniques for impulsive differential equations with delay, we prove that the system is permanent under appropriate conditions. The results show that time delay, pulse vaccination and nonlinear incidence have significant effects on the dynamics behaviors of the model. Our results are illustrated and corroborated with some numerical experiments.  相似文献   

15.
根据不同程度的感染者有不同的传染率,建立了一个具有阶段结构和双线性传染率的S IR流行病模型,得到了模型的阈值参数R0,证明了模型平衡点的全局性态完全由R0的值确定.并进行了数值模拟.  相似文献   

16.
The differential susceptibility SIR epidemic model with time delay and pulse vaccination is introduced. Some sufficient conditions for the globally attractivity of infection-free periodic solution and permanence of this system are presented. Two numerical simulations are also given to illustrate our main results.  相似文献   

17.
In this paper, we propose a susceptible-infected-susceptible (SIS) model on complex networks, small-world (WS) networks and scale-free (SF) networks, to study the epidemic spreading behavior with time delay which is added into the infected phase. Considering the uniform delay, the basic reproduction number R 0 on WS networks and \(\bar R_0\) on SF networks are obtained respectively. On WS networks, if R 0 ≤ 1, there is a disease-free equilibrium and it is locally asymptotically stable; if R 0 > 1, there is an epidemic equilibrium and it is locally asymptotically stable. On SF networks, if \(\bar R_0 \leqslant 1\), there is a disease-free equilibrium; if \(\bar R_0 > 1\), there is an epidemic equilibrium. Finally, we carry out simulations to verify the conclusions and analyze the effect of the time delay τ, the effective rate λ, average connectivity 〈k〉 and the minimum connectivity m on the epidemic spreading.  相似文献   

18.
In this paper, we present a DI SIR epidemic model with two categories stochastic perturbations. The long time behavior of the two stochastic systems is studied. Mainly, we show how the solution goes around the infection-free equilibrium and the endemic equilibrium of deterministic system under different conditions.  相似文献   

19.
一类带有一般接触率和常数输入的流行病模型的全局分析   总被引:12,自引:1,他引:11  
借助极限系统理论和构造适当的Liapunov函数,对带有一般接触率和常数输入的SIR型和SIRS型传染病模型进行讨论.当无染病者输入时,地方病平衡点存在的阈值被找到A·D2对相应的SIR模型,关于无病平衡点和地方病平衡点的全局渐近稳定性均得到充要条件;对相应的SIRS模型,得到无病平衡点和地方病平衡点全局渐近稳定的充分条件.当有染病者输入时,模型不存在无病平衡点.对相应的SIR模型,地方病平衡点是全局渐近稳定的;对相应的SIRS模型,得到地方病平衡点全局渐近稳定的充分条件.  相似文献   

20.
In this paper, we propose a new SIV epidemic model with time delay, which also involves both direct and environmental transmissions. For such model, we first introduce the basic reproduction number $\mathscr{R}$ by using the next generation matrix. And then global stability of the equilibria is discussed by means of Lyapunov functionals and LaSalle''s invariance principle for delay differential equations, which shows that the infection-free equilibrium of the system is globally asymptotically stable if $\mathscr{R}<1$ and the epidemic equilibrium of the system is globally asymptotically stable for $\m  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号