首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, we study finite difference scheme for coupled time fractional Klein‐Gordon‐Schrödinger (KGS) equation. We proposed a linearized finite difference scheme to solve the coupled system, in which the fractional derivatives are approximated by some recently established discretization formulas. These formulas approximate the solution with second‐order accuracy at points different form the grid points in time direction. Taking advantage of this property, our proposed linearized scheme evaluates the nonlinear terms on the previous time level. As a result, iterative method is dispensable. The coupled terms in the scheme bring difficulties in analysis. By carefully studying these effects, we proved that the proposed scheme is unconditionally convergent and stable in discrete norm with energy method. Numerical results are included to justify the theoretical statements.  相似文献   

2.
High order compact Alternating Direction Implicit scheme is given for solving the generalized sine-Gordon equation in a two-dimensional rectangular domain. We apply the compact finite difference operators to obtain a fourth order discretization for the second order space derivatives, and we give a linearized three time level algorithm for solving the original nonlinear equation. Error estimate is given by the energy method. Numerical results are provided to verify the accuracy and efficiency of this algorithm.  相似文献   

3.
A nonlinear finite difference scheme with high accuracy is studied for a class of two-dimensional nonlinear coupled parabolic-hyperbolic system. Rigorous theoretical analysis is made for the stability and convergence properties of the scheme, which shows it is unconditionally stable and convergent with second order rate for both spatial and temporal variables. In the argument of theoretical results, difficulties arising from the nonlinearity and coupling between parabolic and hyperbolic equations are overcome, by an ingenious use of the method of energy estimation and inductive hypothesis reasoning. The reasoning method here differs from those used for linear implicit schemes, and can be widely applied to the studies of stability and convergence for a variety of nonlinear schemes for nonlinear PDE problems. Numerical tests verify the results of the theoretical analysis. Particularly it is shown that the scheme is more accurate and faster than a previous two-level nonlinear scheme with first order temporal accuracy.  相似文献   

4.
本文对一维非线性 Schrödinger 方程给出两个紧致差分格式, 运用能量方法和两个新的分析技 巧证明格式关于离散质量和离散能量守恒, 而且在最大模意义下无条件收敛. 对非线性紧格式构造了 一个新的迭代算法, 证明了算法的收敛性, 并在此基础上给出一个新的线性化紧格式. 数值算例验证 了理论分析的正确性, 并通过外推进一步提高了数值解的精度.  相似文献   

5.
Korteweg-de Vries equation is a nonlinear evolutionary partial differential equation that is of third order in space. For the approximation to this equation with the initial and boundary value conditions using the finite difference method, the difficulty is how to construct matched finite difference schemes at all the inner grid points. In this paper, two finite difference schemes are constructed for the problem. The accuracy is second-order in time and first-order in space. The first scheme is a two-level nonlinear implicit finite difference scheme and the second one is a three-level linearized finite difference scheme. The Browder fixed point theorem is used to prove the existence of the nonlinear implicit finite difference scheme. The conservation, boundedness, stability, convergence of these schemes are discussed and analyzed by the energy method together with other techniques. The two-level nonlinear finite difference scheme is proved to be unconditionally convergent and the three-level linearized one is proved to be conditionally convergent. Some numerical examples illustrate the efficiency of the proposed finite difference schemes.  相似文献   

6.
In this article, a compact finite difference method is developed for the periodic initial value problem of the N‐coupled nonlinear Klein–Gordon equations. The present scheme is proved to preserve the total energy in the discrete sense. Due to the difficulty in obtaining the priori estimate from the discrete energy conservation law, the cut‐off function technique is employed to prove the convergence, which shows the new scheme possesses second order accuracy in time and fourth order accuracy in space, respectively. Additionally, several numerical results are reported to confirm our theoretical analysis. Lastly, we apply the reliable method to simulate and study the collisions of solitary waves numerically.  相似文献   

7.
In this article, we study a new second‐order energy stable Backward Differentiation Formula (BDF) finite difference scheme for the epitaxial thin film equation with slope selection (SS). One major challenge for higher‐order‐in‐time temporal discretizations is how to ensure an unconditional energy stability without compromising numerical efficiency or accuracy. We propose a framework for designing a second‐order numerical scheme with unconditional energy stability using the BDF method with constant coefficient stabilizing terms. Based on the unconditional energy stability property that we establish, we derive an stability for the numerical solution and provide an optimal convergence analysis. To deal with the highly nonlinear four‐Laplacian term at each time step, we apply efficient preconditioned steepest descent and preconditioned nonlinear conjugate gradient algorithms to solve the corresponding nonlinear system. Various numerical simulations are presented to demonstrate the stability and efficiency of the proposed schemes and solvers. Comparisons with other second‐order schemes are presented.  相似文献   

8.
In this article, a linearized conservative difference scheme for a coupled nonlinear Schrödinger equations is studied. The discrete energy method and an useful technique are used to analyze the difference scheme. It is shown that the difference solution unconditionally converges to the exact solution with second order in the maximum norm. Numerical experiments are presented to support the theoretical results.  相似文献   

9.
In this work, the MMC-TDGL equation, a stochastic Cahn-Hilliard equation, is solved numerically by using the finite difference method in combination with a convex splitting technique of the energy functional. For the non-stochastic case, we develop an unconditionally energy stable difference scheme which is proved to be uniquely solvable. For the stochastic case, by adopting the same splitting of the energy functional, we construct a similar and uniquely solvable difference scheme with the discretized stochastic term. The resulted schemes are nonlinear and solved by Newton iteration. For the long time simulation, an adaptive time stepping strategy is developed based on both first- and second-order derivatives of the energy. Numerical experiments are carried out to verify the energy stability, the efficiency of the adaptive time stepping and the effect of the stochastic term.  相似文献   

10.
A novel three level linearized difference scheme is proposed for the semilinear parabolic equation with nonlinear absorbing boundary conditions. The solution of this problem will blow up in finite time. Hence this difference scheme is coupled with an adaptive time step size, i.e., when the solution tends to infinity, the time step size will be smaller and smaller. Furthermore, the solvability, stability and convergence of the difference scheme are proved by the energy method. Numerical experiments are also given to demonstrate the theoretical second order convergence both in time and in space in L-norm.  相似文献   

11.
We present a second‐order finite difference scheme for approximating solutions of a mathematical model of erythropoiesis, which consists of two nonlinear partial differential equations and one nonlinear ordinary differential equation. We show that the scheme achieves second‐order accuracy for smooth solutions. We compare this scheme to a previously developed first‐order method and show that the first order method requires significantly more computational time to provide solutions with similar accuracy. We also compare this numerical scheme with other well‐known second‐order methods and show that it has better capability in approximating discontinuous solutions. Finally, we present an application to recovery after blood loss. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

12.
In this paper, we propose an efficient numerical scheme for magnetohydrodynamics (MHD) equations. This scheme is based on a second order backward difference formula for time derivative terms, extrapolated treatments in linearization for nonlinear terms. Meanwhile, the mixed finite element method is used for spatial discretization. We present that the scheme is unconditionally convergent and energy stable with second order accuracy with respect to time step. The optimal L 2 and H 1 fully discrete error estimates for velocity, magnetic variable and pressure are also demonstrated. A series of numerical tests are carried out to confirm our theoretical results. In addition, the numerical experiments also show the proposed scheme outperforms the other classic second order schemes, such as Crank-Nicolson/Adams-Bashforth scheme, linearized Crank-Nicolson’s scheme and extrapolated Gear’s scheme, in solving high physical parameters MHD problems.  相似文献   

13.
In this article, we analyze a Crank‐Nicolson‐type finite difference scheme for the nonlinear evolutionary Cahn‐Hilliard equation. We prove existence, uniqueness and convergence of the difference solution. An iterative algorithm for the difference scheme is given and its convergence is proved. A linearized difference scheme is presented, which is also second‐order convergent. Finally a new difference method possess a Lyapunov function is presented. © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 23: 437–455, 2007  相似文献   

14.
In this paper, we study the initial-boundary value problem of the usual Rosenau-RLW equation by finite difference method. We design a conservative numerical scheme which preserves the original conservative properties for the equation. The scheme is three-level and linear-implicit. The unique solvability of numerical solutions has been shown. Priori estimate and second order convergence of the finite difference approximate solutions are discussed by discrete energy method. Numerical results demonstrate that the scheme is efficient and accurate.  相似文献   

15.
The mathematical modeling of a planar solid‐liquid interface in the solidification of a dilute binary alloy is formulating by one of nonintegrable, nonlinear evolution equation known as Sivashinsky equation. In the first part of this paper, the mathematical modeling of Sivashinsky equation is briefly discussed. Since, the exact solutions of this equation is yet unknown, obtaining its numerical solution plays an important role to simulate its behavior. Therefore, in the second part, a second‐order splitting finite difference scheme, based on Crank‐Nicolson method, is investigated to approximate the solution of the Sivashinsky equation with homogeneous boundary conditions. We prove the solvability of the present scheme and establish the error estimate of the numerical scheme.  相似文献   

16.
两类变时间步长的非线性Galerkin算法的稳定性   总被引:3,自引:0,他引:3  
何银年  侯延仁 《计算数学》1999,21(2):139-156
1.引言近年来,随着计算机的飞速发展,人们越来越关心非线性发展方程解的渐进行为.为了较精确地描述解在时间t→∞时的渐进行为,人们发展了一类惯性算法,即非线性Galerkin算法.该算法是将来解空间分解为低维部分和高维部分,相应的方程可以分别投影到它们上面,它的解也相应地分解为两部分,大涡分量和小涡分量;然后核算法给出大涡分量和小涡分量之间依赖关系的一种近似,以便容易求出相应的近似解.许多研究表明,非线性Galerkin算法比通常的Galerkin算法节省可观的计算量.当数值求解微分方程时,计算机只能对已知数据进行有限位…  相似文献   

17.
一类非线性偏积分微分方程二阶差分全离散格式   总被引:1,自引:0,他引:1  
给出了数值求解一类非线性偏积分微分方程的二阶全离散差分格式.采用了二阶向后差分格式,积分项的离散利用了Lubich的二阶卷积求积公式,给出了稳定性的证明、误差估计及收敛性的结果.  相似文献   

18.
In this paper, a finite difference scheme is proposed for solving the nonlinear time-fractional integro-differential equation. This model involves two nonlocal terms in time, ie, a Caputo time-fractional derivative and an integral term with memory. The existence of numerical solutions is shown by the Leray-Schauder theorem. And we obtain the discrete L2 stability and convergence with second order in time and space by the discrete energy method. Then the uniqueness of numerical solutions is derived. Moreover, an iterative algorithm is designed for solving the derived nonlinear system. Numerical examples are presented to validate the theoretical findings and the efficiency of the proposed algorithm.  相似文献   

19.
Finite difference scheme to the generalized one‐dimensional sine‐Gordon equation is considered in this paper. After approximating the second order derivative in the space variable by the compact finite difference, we transform the sine‐Gordon equation into an initial‐value problem of a second‐order ordinary differential equation. Then Padé approximant is used to approximate the time derivatives. The resulting fully discrete nonlinear finite‐difference equation is solved by a predictor‐corrector scheme. Both Dirichlet and Neumann boundary conditions are considered in our proposed algorithm. Stability analysis and error estimate are given for homogeneous Dirichlet boundary value problems using energy method. Numerical results are given to verify the condition for stability and convergence and to examine the accuracy and efficiency of the proposed algorithm. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

20.
A conservative difference scheme is presented for two‐dimensional nonlinear Schrödinger equation with wave operator. The discrete energy method and an useful technique are used to analyze the difference scheme. It is shown, both theoretically and numerically, that the difference solution is conservative, unconditionally stable and convergent with second order in maximum norm. A numerical experiment indicates that the scheme is very effective. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 862–876, 2016  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号