首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we present a finite difference scheme for the solution of an initial-boundary value problem of the Schrödinger-Boussinesq equation. The scheme is fully implicit and conserves two invariable quantities of the system. We investigate the existence of the solution for the scheme, give computational process for the numerical solution and prove convergence of iteration method by which a nonlinear algebra system for unknown Vn+1 is solved. On the basis of a priori estimates for a numerical solution, the uniqueness, convergence and stability for the difference solution is discussed. Numerical experiments verify the accuracy of our method.  相似文献   

2.
The three-level explicit scheme is efficient for numerical approximation of the second-order wave equations. By employing a fourth-order accurate scheme to approximate the solution at first time level, it is shown that the discrete solution is conditionally convergent in the maximum norm with the convergence order of two. Since the asymptotic expansion of the difference solution consists of odd powers of the mesh parameters (time step and spacings), an unusual Richardson extrapolation formula is needed in promoting the second-order solution to fourth-order accuracy. Extensions of our technique to the classical ADI scheme also yield the maximum norm error estimate of the discrete solution and its extrapolation. Numerical experiments are presented to support our theoretical results.  相似文献   

3.
We study dislocation dynamics with a level set point of view. The model we present here looks at the zero level set of the solution of a non local Hamilton Jacobi equation, as a dislocation in a plane of a crystal. The front has a normal speed, depending on the solution itself. We prove existence and uniqueness for short time in the set of continuous viscosity solutions. We also present a first order finite difference scheme for the corresponding level set formulation of the model. The scheme is based on monotone numerical Hamiltonian, proposed by Osher and Sethian. The non local character of the problem makes it not monotone. We obtain an explicit convergence rate of the approximate solution to the viscosity solution. We finally provide numerical simulations.This work has been supported by funds from ACI JC 1041 “Mouvements d’interfaces avec termes non-locaux”, from ACI-JC 1025 “Dynamique des dislocations” and from ONERA, Office National d’Etudes et de Recherches. The second author was also supported by the ENPC-Région Ile de France.  相似文献   

4.
In general, proofs of convergence and stability are difficult for symplectic schemes of nonlinear equations. In this paper, a symplectic difference scheme is proposed for an initial-boundary value problem of a coupled nonlinear Schrödinger system. An important lemma and an induction argument are used to prove the unique solvability, convergence and stability of numerical solutions. An iterative algorithm is also proposed for the symplectic scheme and its convergence is proved. Numerical examples show the efficiency of the symplectic scheme and the correction of our numerical analysis.  相似文献   

5.
An Engquist-Osher type finite difference scheme is derived for dealing with scalar conservation laws having a flux that is spatially dependent through a possibly discontinuous coefficient. The new monotone difference scheme is based on introducing a new interface numerical flux function, which is called a generalized Engquist-Osher flux. By means of this scheme, the existence and uniqueness of weak solutions to the scalar conservation laws are obtained and the convergence theorem is established. Some numerical examples are presented and the corresponding numerical results are displayed to illustrate the efficiency of the methods.  相似文献   

6.
Firstly an implicit conservative finite difference scheme is presented for the initial-boundary problem of the one space dimensional Klein–Gordon–Zakharov (KGZ) equations. The existence of the difference solution is proved by Leray–Schauder fixed point theorem. It is proved by the discrete energy method that the scheme is uniquely solvable, unconditionally stable and second order convergent for U   in ll norm, and for N   in l2l2 norm on the basis of the priori estimates. Then an explicit difference scheme is proposed for the KGZ equations, on the basis of priori estimates and two important inequalities about norms, convergence of the difference solutions is proved. Because it is explicit and not coupled it can be computed by a parallel method. Numerical experiments with the two schemes are done for several test cases. Computational results demonstrate that the two schemes are accurate and efficient.  相似文献   

7.
In this paper, we analyze two new second-order characteristic schemes in time and age for an age-structured population model with nonlinear diffusion and reaction. By using the characteristic difference to approximate the transport term and the average along the characteristics to treat the nonlinear spatial diffusion and reaction terms, an implicit second-order characteristic scheme is proposed. To compute the nonlinear approximation system, an explicit second-order characteristic scheme in time and age is further proposed by using the extrapolation technique. The global existence and uniqueness of the solution of the nonlinear approximation scheme are established by using the theory of variation methods, Schauder’s fixed point theorem, and the technique of prior estimates. The optimal error estimates of second order in time and age are strictly proved for both the implicit and the explicit characteristic schemes. Numerical examples are given to illustrate the performance of the methods.  相似文献   

8.
This work deals with the efficient numerical solution of a class of nonlinear time-dependent reaction-diffusion equations. Via the method of lines approach, we first perform the spatial discretization of the original problem by applying a mimetic finite difference scheme. The system of ordinary differential equations arising from that process is then integrated in time with a linearly implicit fractional step method. For that purpose, we locally decompose the discrete nonlinear diffusion operator using suitable Taylor expansions and a domain decomposition splitting technique. The totally discrete scheme considers implicit time integrations for the linear terms while explicitly handling the nonlinear ones. As a result, the original problem is reduced to the solution of several linear systems per time step which can be trivially decomposed into a set of uncoupled parallelizable linear subsystems. The convergence of the proposed methods is illustrated by numerical experiments.  相似文献   

9.
10.
We deal with a single conservation law with discontinuous convex–concave type fluxes which arise while considering sign changing flux coefficients. The main difficulty is that a weak solution may not exist as the Rankine–Hugoniot condition at the interface may not be satisfied for certain choice of the initial data. We develop the concept of generalized entropy solutions for such equations by replacing the Rankine–Hugoniot condition by a generalized Rankine–Hugoniot condition. The uniqueness of solutions is shown by proving that the generalized entropy solutions form a contractive semi-group in L1L1. Existence follows by showing that a Godunov type finite difference scheme converges to the generalized entropy solution. The scheme is based on solutions of the associated Riemann problem and is neither consistent nor conservative. The analysis developed here enables to treat the cases of fluxes having at most one extrema in the domain of definition completely. Numerical results reporting the performance of the scheme are presented.  相似文献   

11.
Summary. An initial--boundary value problem to a system of nonlinear partial differential equations, which consists of a hyperbolic and a parabolic part, is taken into consideration. The problem is discretised by a compact finite difference method. An approximation of the numerical solution is constructed, at which the difference scheme is linearised. Nonlinear convergence is proved using the stability of the linearised scheme. Finally, a computational experiment for a noncompact scheme is presented. Received May 20, 1995  相似文献   

12.
The initial boundary value problem is considered for the dynamic string equation . Its solution is found by means of an algorithm, the constituent parts of which are the Galerkin method, the modified Crank-Nicolson difference scheme used to perform approximation with respect to spatial and time variables, and also a Picard type iteration process for solving the system of nonlinear equations obtained by discretization. Errors of the three parts of the algorithm are estimated and, as a result, its total error estimate is obtained.  相似文献   

13.
Semi-Lagrangian semi-implicit (SLSI) method is currently one of the most efficient approaches for numerical solution of the atmosphere dynamics equations. In this research we apply splitting techniques in the context of a two-time-level SLSI scheme in order to simplify the treatment of the slow physical modes and optimize the solution of the elliptic equations related to implicit part of the scheme. The performed numerical experiments show the accuracy and computational efficiency of the scheme.  相似文献   

14.
We study a generalized Crank–Nicolson scheme for the time discretization of a fractional wave equation, in combination with a space discretization by linear finite elements. The scheme uses a non-uniform grid in time to compensate for the singular behaviour of the exact solution at t = 0. With appropriate assumptions on the data and assuming that the spatial domain is convex or smooth, we show that the error is of order k 2 + h 2, where k and h are the parameters for the time and space meshes, respectively.  相似文献   

15.
A nonlinear iteration method named the Picard-Newton iteration is studied for a two-dimensional nonlinear coupled parabolic-hyperbolic system. It serves as an efficient method to solve a nonlinear discrete scheme with second spatial and temporal accuracy. The nonlinear iteration scheme is constructed with a linearization-discretization approach through discretizing the linearized systems of the original nonlinear partial differential equations. It can be viewed as an improved Picard iteration, and can accelerate convergence over the standard Picard iteration. Moreover, the discretization with second-order accuracy in both spatial and temporal variants is introduced to get the Picard-Newton iteration scheme. By using the energy estimate and inductive hypothesis reasoning, the difficulties arising from the nonlinearity and the coupling of different equation types are overcome. It follows that the rigorous theoretical analysis on the approximation of the solution of the Picard-Newton iteration scheme to the solution of the original continuous problem is obtained, which is different from the traditional error estimate that usually estimates the error between the solution of the nonlinear discrete scheme and the solution of the original problem. Moreover, such approximation is independent of the iteration number. Numerical experiments verify the theoretical result, and show that the Picard-Newton iteration scheme with second-order spatial and temporal accuracy is more accurate and efficient than that of first-order temporal accuracy.  相似文献   

16.
Non-oscillatory schemes are widely used in numerical approximations of nonlinear conservation laws. The Nessyahu–Tadmor (NT) scheme is an example of a second order scheme that is both robust and simple. In this paper, we prove a new stability property of the NT scheme based on the standard minmod reconstruction in the case of a scalar strictly convex conservation law. This property is similar to the One-sided Lipschitz condition for first order schemes. Using this new stability, we derive the convergence of the NT scheme to the exact entropy solution without imposing any nonhomogeneous limitations on the method. We also derive an error estimate for monotone initial data.  相似文献   

17.
By introducing a time relaxation term for the time derivative of higher frequency components, we proposed a stabilized semi-implicit Galerkin scheme for evolutionary Navier-Stokes equations in this paper. Analysis shows that such a scheme has weaker stability conditions than that of a classical semi-implicit Galerkin scheme and, when a suitable relaxation parameter σ is chosen, it generates an approximate solution with the same accuracy as the classical one. That means the proposed scheme might use a larger time step to generate a bounded approximate solution. Thus it is more suitable for long time simulations.  相似文献   

18.
This paper is concerned with a compact locally one-dimensional (LOD) finite difference method for solving two-dimensional nonhomogeneous parabolic differential equations. An explicit error estimate for the finite difference solution is given in the discrete infinity norm. It is shown that the method has the accuracy of the second-order in time and the fourth-order in space with respect to the discrete infinity norm. A Richardson extrapolation algorithm is developed to make the final computed solution fourth-order accurate in both time and space when the time step equals the spatial mesh size. Numerical results demonstrate the accuracy and the high efficiency of the extrapolation algorithm.  相似文献   

19.
In this paper we present a numerical method for a generalized Black-Scholes equation, which is used for option pricing. The method is based on a central difference spatial discretization on a piecewise uniform mesh and an implicit time stepping technique. Our scheme is stable for arbitrary volatility and arbitrary interest rate, and is second-order convergent with respect to the spatial variable. Furthermore, the present paper efficiently treats the singularities of the non-smooth payoff function. Numerical results support the theoretical results.  相似文献   

20.
The present work considers a nonlinear abstract hyperbolic equation with a self-adjoint positive definite operator, which represents a generalization of the Kirchhoff string equation. A symmetric three-layer semi-discrete scheme is constructed for an approximate solution of a Cauchy problem for this equation. Value of the gradient in the nonlinear term of the scheme is taken at the middle point. It makes possible to find an approximate solution at each time step by inverting the linear operator. Local convergence of the constructed scheme is proved. Numerical calculations for different model problems are carried out using this scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号