首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
合成了2种新的N-甲基-N-苄基二硫代氨基甲酸锑[Sb(MeBnNCS23](1)和铋[Bi(MeBnNCS23](2)配合物。通过元素分析、红外光谱、1H NMR、热重对其进行表征,并用X-射线单晶衍射测定了晶体结构。配合物12均属于单斜晶系,P21/c空间群。配合物1的晶胞参数为:a=0.9551(7)nm,b=1.3575(10)nm,c=2.4681(17)nm,β=104.01(2)°,Z=4,V=3.105(4)nm3,Dc=1.520g·cm-3,F(000)=1440,μ=1.314mm-1,最终偏离因子R1=0.0339,wR2=0.0832,S=1.010;配合物2的晶胞参数为:a=1.3390(6)nm,b=0.9975(5)nm,c=2.4261(5)nm,β=98.433(7)°,Z=4,V=3.205(2)nm3,Dc=1.653g·cm-3,F(000)=1568,μ=5.912mm-1,最终偏离因子R1=0.0398,wR2=0.0864,S=1.089。在这2个配合物中,中心金属离子M(Ⅲ)与来自3个配体中的6个硫原子配位,配合物1形成6配位的畸变的八面体构型;配合物2则形成6配位的畸变的五角锥构型。在配合物2中,分子之间又通过Bi…S弱相互作用构成二聚体结构。利用琼脂扩散法测试了配合物的抑菌活性,结果表明配合物1对4种受试菌株具有较强的抑菌活性。  相似文献   

2.
甲醇中氧化双[三(2-甲基-2-苯基)丙基锡]分别与DL-扁桃酸、苯乙酸反应,合成了2个三烃基锡配合物(PhCMe2CH23Sn[O2CCH(OH)Ph](1)和(PhCMe2CH23Sn(O2CCH2Ph)(2)。经IR、1H和13CNMR、元素分析和X-射线单晶衍射表征结构。12均属三斜晶系,空间群P1。配合物1晶体学参数:a=0.9711(2)nm,b=1.1766(3)nm,c=1.7008(4)nm,α=96.840(12)°,β=103.235(12)°,γ=110.725(11)°,Z=2,V=1.7260(7)nm3,Dc=1.288g·cm-3,μ(Mo)=0.773mm-1,F(000)=696,R1=0.0325,wR2=0.0873。配合物2晶体学参数:a=0.97285(9)nm,b=1.16140(11)nm,c=1.68931(16)nm,α=96.830(5)°,β=101.935(5)°,γ=110.770(4)°,Z=2,V=1.7071(3)nm3,Dc=1.271g·cm-3,μ(Mo)=0.778mm-1,F(000)=680,R1=0.0248,wR2=0.0673。12的中心锡原子均为畸变四面体构型。通过分子间C-H…O或C-H…π作用,1和2分别形成一维带状或链状结构。热重分析结果表明,12具有良好的稳定性。毒性测试的初步结果表明,配合物1、2具有较好的环境相容性,对石螺急性毒性较小。  相似文献   

3.
The title complex [Cu3(TFSSB)2·(H2O)4·4H2O]n (TFSSB=taurine 3-formylsalicylic schiff base) was synthesized by TFSSB and copper(Ⅱ) acetate monohydrate in ethanol solution and the crystal structure was determined by X-ray diffraction method. The crystal belongs to monoclinic system, space group P21 / n,with cell parameters: a=0.927 9(6) nm, b=1.173 0(2) nm, c=1.471(2) nm, β=106.96(2)°, and V=1.531(2) nm3, Z=2, Dc=1.890 g·cm-3, μ=2.291 mm-1, F(000)=882, R1=0.025 9, wR2=0.065 9. The Cu1 is five-coordinate, the Cu2 is four-coordinate. CCDC: 253298.  相似文献   

4.
以邻甲酰基苯磺酸钠和异烟肼为原料在乙醇/水溶液中制备了一种酰腙类Schiff碱配体(NaL),采用常规溶液挥发法合成了由该配体构筑的Zn((Ⅱ)配位聚合物{[Zn(L)2(H2O)2]·4H2O}n。利用元素分析、IR、TGA和X-射线单晶衍射分析对配合物进行了表征。配合物晶体属三斜晶系,P1空间群,晶胞参数a=0.78698(4)nm,b=0.86926(5)nm,c=1.18044(7)nm,α=103.353(5)°,β=100.965(4)°,γ=93.123(4)°,Z=1,V=0.76724(7)nm3,Dc=1.697g·cm-3。每个Zn(Ⅱ)离子被2个配体L-阴离子双重桥联形成二核环状结构单元,并通过共用锌离子形成一维链配位聚合物,链与链之间通过氢键扩展为具有一维开放孔道的三维超分子网络结构。  相似文献   

5.
桥联双核配合物[(DPC)2Co2(H2O)5]·2H2O的合成与晶体结构   总被引:9,自引:0,他引:9  
The new complex formulated [(DPC)2Co2(H2O)5]·2H2O (HDPC- is pyridine-2,6-dicarboxylate) has been synthesized and the crystal structure was determined by X-ray diffraction. The crystal structure of the complex belongs to monoclinic system with space group P21/c, a=0.83850(10) nm, b=2.7386(4) nm, c=0.9610(2) nm, β=98.280 (10) °, V=2.1838(6) nm3, Z=4, Dc=1.746 g·cm-3, μ=1.597 mm-1. In the crystal the two Co2+ are in distorted octahedrons. The part of [Co(DPC)2] possess an approximate D2d symmetry, while the part of [OCo(2)(OH2)5] has an approximate C2 symmetry.  相似文献   

6.
Three tin (Ⅳ) complexes with N,N-dialkyl dithiocarbamates Ph3SnS2CN(CH3)C6H5 (1),Ph3SnS2CN(C4H8NH) (2) and Sn(Cl)2(S2CNEt2)2 (3) have been synthesized. The crystal structures have been determined by X-ray sin- gle crystal diffraction. A crystal of the complex 1 is triclinic with space group P1, a=0.9485(3)nm, b=1.0491(3)nm, c=1.3631(4)nm, α=70.996(4)°, β=72.294(4)°, γ=79.609(4)°, Z=2, V=1.2168(6)nm3, Dc=1.453g·cm-3, μ=1.234mm-1, R=0.0442, wR=0.0858. A crystal of the complex 2 is monoclinic with space group P2(1)/c, a=1.2214(2)nm, b=1.1651(2)nm, c=1.5769(3)nm,β=99.039(2)°, Z=2, V=2.2162(7)nm3, Dc=1.532g·cm-3, μ=1.352mm-1, R=0.0267, wR=0.0591. A crystal of the complex 3 is triclinic with space group P1, a=0.7179(2)nm, b=0.9256(3)nm, c=1.5327(5)nm,α=93.857(4)°,β=98.992(4)°, γ=109.481(4)°, Z=2, V=0.9405(5)nm3, Dc=1.717g·cm-3, μ=2.076mm-1, R=0.0263, wR=0.0662. In the complexes 1 and 2 the tin atoms rendered five-coordination in a distorted tigonal bipyramidal structure and in the complex 3 the tin atom rendered six-coordination in a distorted octahedron structure. CCDC: 1, 179918; 2, 180024; 3, 180004.  相似文献   

7.
The title compound, [Mn(2,4,6-TMBA)2(H2O)3]n·2nH2O(1), where 2,4,6-TMBA=2,4,6-trimethylbenzoic acid, was synthesized and its crystal structure was determined by X-ray diffraction analysis. The crystal is of monoclinic, space group C2/c with a=2.929 9(6) nm, b=1.036 4(2) nm, c=8.222 04(17) nm, V=2.494 7(9) nm3, Z=4, M=471.40, Dc=1.255 g·cm-3, μ=0.571 mm-1, F(000)=996, Rint=0.029 4, R=0.037 6 and wR=0.094 9. The Mn atoms are octahedrally coordinated by two O atoms of two ligands and four O atoms of water. The carboxyl group coordinates to Mn(Ⅱ) in the mode of monodentate, while the O atoms of water molecules coordinates in bridging mode. The complex shows a one-dimensional chain structure bridged by water molecules. CCDC: 297750.  相似文献   

8.
A novel cobalt(Ⅱ) complex with biphenyl-3,3′,4,4′-tetracarboxylic acid (H4bptc) and 2-phenyl-1,3,7,8-tetraazacyclopenta[l]-phenanthrene (ptcp), {[Co(H2bptc)(ptcp)(H2O)2]·H2O}n(1), has been synthesized by hydro-thermal method and was characterized by elemental analysis, single crystal X-ray diffraction and thermal gravimetry (TG). It crystallizes in monoclinic, space group Pn with a=0.719 44(14) nm, b=1.259 4(3) nm, c=1.681 9(3) nm, β=93.30(3)°, V=1.521 5(5) nm3, Z=2, C35H26CoN4O11, Mr=737.53, Dc=1.610 g·cm-3, μ(Mo Kα)=0.639 mm-1, F(000)=758, S=1.024, R1=0.076 7 and wR2=0.120 6. The structural analyses reveal that the title complex is a 1D zigzag chain strcture along the c axis, which is stacked to furnish a three-dimensional supramolecular net structure via hydrogen bonding interactions. CCDC: 793796.  相似文献   

9.
葛红光   范广  陈三平  高胜利 《化学学报》2006,64(24):2501-2504
在水溶液中合成了离子型配合物[Ni(phen)2(H2O)2][Ni(PDC)2]•7H2O (H2PDC=吡啶-2,6-二甲酸, phen=1,10-菲啰啉). 通过元素分析、红外光谱、单晶X射线衍射以及热重分析对配合物进行了表征. 晶体数据解析表明, 化合物属于三斜晶系, 空间群为P1, a=1.0092(4) nm, b=1.4599(6) nm, c=1.4933(5) nm, α=73.982(2)°, β=78.652(2)°, γ=75.184(3)°, V=2.0256(13) nm3, Z=2, F(000)=1004, μ=1.014 mm-1, R1=0.0538, wR2=0.1493. 配合物中的结晶水分子形成一个(H2O)12水簇, (H2O)12水簇通过氢键连接为二维水网, 最终构成三维超分子网络.  相似文献   

10.
The bismuth complex with dithiopiperdylcarbamate [Bi(S2CNC5H10)2(NO3)]·[1,10-Phen]·0.5H2O was synthesized. The crystal and molecular structure were determined by X-ray single crystal diffraction. The crystal belongs to monoiclinic with space group C2/c, a=3.140(2) nm, b=1.176 4(9) nm, c=2.021 6(15) nm, β=103.081(12)°, V=5.713(7) nm3, Z=8, F(000)=3064, Dc=1.815 g·cm-3, μ=6.502mm-1. The final R1=0.0332, wR2=0.040 3. In the complex, the bismuth atom is eight-coordinated in a capped distorted pentagonal bipyramidal geometry. CCDC: 222655.  相似文献   

11.
Three new hydrated scandium selenites have been hydrothermally synthesized as single crystals and structurally and physically characterized. Sc2(SeO3)3·H2O crystallizes as a new structure type containing novel ScO7 pentagonal bipyramidal and ScO6+1 capped octahedral coordination polyhedra. Sc2(SeO3)3·3H2O contains typical ScO6 octahedra and is isostructural with its M2(SeO3)3·3H2O (M=Al, Cr, Fe, Ga) congeners. CsSc3(SeO3)4(HSeO3)2·2H2O contains near-regular ScO6 octahedra and has essentially the same structure as its indium-containing analogue. All three phases contain the expected pyramidal [SeO3]2- selenite groups. Crystal data: Sc2(SeO3)3·3H2O, Mr=524.85, trigonal, R3c (No. 161), , , , Z=6, R(F)=0.018, wR(F2)=0.036; Sc2(SeO3)3·H2O, Mr=488.82, orthorhombic, P212121 (No. 19), , , , , Z=4, R(F)=0.051, wR(F2)=0.086; CsSc3(SeO3)4(HSeO3)2·2H2O, Mr=1067.60, orthorhombic, Pnma (No. 62), , , , , Z=4, R(F)=0.035, wR(F2)=0.070.  相似文献   

12.
Compound [Ni(hmt)2(SCN)2(H2O)2][Ni(SCN)2(H2O)4](H2O)2 (hmt=hexamethylenetetramine) was pre-pared and structurally characterized by means of X-ray single crystal diffraction. The two neutral units [Ni(hmt)2(SCN)2(H2O)2] and [Ni(SCN)2(H2O)4] are joined together through hydrogen bonds N…H-O, O…H-O and S…H-O. In the solid state, the compound has three-dimensional network structure. The determination of its variable-temperature magnetic susceptibilities (5~300K) shows that the magnetic behavior obeys the Curie-Weiss law over the whole temperature ranges.  相似文献   

13.
Fourier transform infrared reflection spectroscopy (incidence angle of 5°) was used to characterize thin films of dimethyl ether (DME) and of mixtures containing water and DME between 10 and 160 K under a pressure of 10−7 mbar. Solid DME has two solid phases: an amorphous phase which is obtained below 65 K and a crystalline phase >65 K. From 90 K, DME begins to sublimate with surface binding energy of 20±2 kJ mol−1. Vibrational spectrum of DME trapped in water ice remains nearly unchanged from 30 to 120 K. Between 120 and 130 K, a large part of DME is released and strong changes in the frequencies and the profile of the absorptions of DME are observed. This behavior suggests the formation of clathrate hydrate. Below 120 K, the trapped DME is hydrogen-bonded to water molecules.  相似文献   

14.
A cobalt phosphonate (H3O)6·[Co4(H2O)4(HPMIDA)2(PMIDA)2)]·2H2O, 1, has been synthesized from a mild solvothermal reaction of Co(II) ion with N-(phosphonomethyl)iminodiacetic acid (H4PMIDA). Compound 1 crystallizes in the triclinic space group with cell parameters of , , , α=93.06(3)°, β=99.66(3)°, γ=90.34(3)° and Z=1. Compound 1 shows a novel tetra-nuclear molecular structure. In the crystal lattice, molecules of 1 hydrogen bond to each other to form two-dimensional (2D) layers, which are further linked together by the co-crystallized H2O molecules and H3O+ counter ions through hydrogen bonding to form the 3D supramolecular network. Thermogravimetric analysis, IR spectrum, magnetic susceptibility and luminescent spectra are given.  相似文献   

15.
Synthesis, structure, spectroscopy and thermal properties of complex [Co(NCS)2(hmt)2(H2O)2][Co(NCS)2(H2O)4] (H2O) (I), assembled by hexamethylenetetramine and octahedral Co(II) metal ions, are reported. Crystal data for I: Fw 387.34, a=9.020(8), b=12.887(9), c=7.95(1) Å, =96.73(4), β=115.36(5), γ=94.16(4)°, V=820(1) Å3, Z=2, space group=P−1, T=173 K, λ(Mo-K)=0.71070 Å, ρcalc=1.718567 g cm−3, μ=17.44 cm−1, R=0.088, Rw=0.148. An interesting two-dimensional network is assembled via hydrogen bonds through coordinated and free water molecules. The d–d transition energy levels of Co(II) ion are determined by UV–vis spectroscopy and calculated by ligand field theory. The calculated results agree well with experiment ones.  相似文献   

16.
A complex of the composition KNa3[Fe3O(CH3COO)6(H2O)3]3 [α-P2W17Fe(H2O)O61]·32.5H2O (I) was obtained by interaction of FeCl3·6H2O and phosphotungstate K102-P2W17O61]·20H2O in an acetate buffer with a yield of 52%. Compound I was characterized by single crystal X-ray phase analysis and IR spectroscopy. In the crystal structure, the Na and K cations bind [Fe3O(CH3COO)6(H2O)3]+ trinuclear cations and [α-P2W17Fe(H2O)O61]7− heteropolytungstate anions into infinite zigzag chains. Original Russian Text Copyright ? 2005 by N. V. Izarova, M. N. Sokolov, A. V. Virovets, H. G. Platas, and V. P. Fedin __________ Translated from Zhurnal Strukturnoi Khimii, Vol. 46, No. 1, pp. 149–155, January–February, 2005.  相似文献   

17.
The syntheses and structural determination of NdIII and ErIII complexes with nitrilotriacetic acid (nta) were reported in this paper. Their crystal and molecular structures and compositions were determined by single-crystal X-ray structure analyses and elemental analyses, respectively. The crystal of K3[NdIII(nta)2(H2O)]·6H2O complex belongs to monoclinic crystal system and C2/c space group. The crystal data are as follows: a=1.5490(11) nm, b=1.3028(9) nm, c=2.6237(18) nm, β=96.803(10)°, V=5.257(6) nm3, Z=8, M=763.89, Dc=1.930 g cm−3, μ=2.535 mm−1 and F(000)=3048. The final R1 and wR1 are 0.0390 and 0.0703 for 4501 (I>2σ(I)) unique reflections, R2 and wR2 are 0.0758 and 0.0783 for all 10474 reflections, respectively. The NdIIIN2O7 part in the [NdIII(nta)2(H2O)]3− complex anion has a pseudo-monocapped square antiprismatic nine-coordinate structure in which the eight coordinate atoms (two N and six O) are from the two nta ligands and a water molecule coordinate to the central NdIII ion directly. The crystal of the K3[ErIII(nta)2(H2O)]·5H2O complex also belongs to monoclinic crystal system and C2/c space group. The crystal data are as follows: a=1.5343(5) nm, b=1.2880(4) nm, c=2.6154(8) nm, b=96.033(5)°, V=5.140(3) nm3, Z=8, M=768.89, Dc=1.987 g cm−3, μ=3.833 mm−1 and F(000)=3032. The final R1 and wR1 are 0.0321 and 0.0671 for 4445 (I>2σ(I)) unique reflections, R2 and wR2 are 0.0432 and 0.0699 for all 10207 reflections, respectively. The ErIIIN2O7 part in the [ErIII(nta)2(H2O)]3− complex anion has the same structure as NdIIIN2O7 part in which the eight coordinate atoms (two N and six O) are from the two nta ligands and a water molecule coordinate to the central NdIII ion directly.  相似文献   

18.
A new synthesis of trisfluoroacetylactone (TFA) and hexafluoroacetylactone (HFA) Nd complexes: Nd(TFA)3 · 2H2O and Hd(HFA)3 · 2H2O is reported. The photoacoustic (PA) spectra in the 300–800 nm region of the compounds NdCl3 · 6H2O, Nd(TFA)3 · 2H2O and Nd(HFA)3 · 2H2O are reported. The PA absorption bands are assigned and their relative intensities represented by intensity branching vectors are calculated. The perturbation of the ligand on the energy levels of Nd3+ ion is discussed and a model of the relaxation process of Nd(HFA)3 · 2H2O is proposed based on its PA and absorption spectra.  相似文献   

19.
Electrical conductivities were measured for the ternary systems Y(NO3)3+La(NO3)3+H2O, La(NO3)3+Ce(NO3)3+H2O, La(NO3)3+Nd(NO3)3+H2O, and their binary subsystems Y(NO3)3+H2O, La(NO3)3+H2O, Ce(NO3)3+H2O, and Nd(NO3)3+H2O at (293.15, 298.15 and 308.15) K. The measured conductivities were used to test the generalized Young’s rule and the semi-ideal solution theory. The comparison results show that the generalized Young’s rule and the semi-ideal solution theory can yield good predictions for the conductivities of the ternary electrolyte solutions, implying that the conductivities of aqueous solutions of (1:3 + 1:3) electrolyte mixtures can be well predicted from those of their constituent binary solutions by the simple equations.  相似文献   

20.
Two solid-state coordination compounds of rare earth metals with glycin, [Gd4/3Y2/3(Gly)6(H2O)4](ClO4)6·5H2O and [ErY(Gly)6(H2O)4](ClO4)6·5H2O were synthesized. The low-temperature heat capacities of the two coordination compounds were measured with an adiabatic calorimeter over the temperature range from 78 to 376 K. [Gd4/3Y2/3(Gly)6(H2O)4](ClO4)6·5H2O melted at 342.90 K, while [ErY(Gly)6(H2O)4](ClO4)6·5H2O melted at 328.79 K. The molar enthalpy and entropy of fusion for the two coordination compounds were determined to be 18.48 kJ mol−1 and 53.9 J K−1 mol−1 for [Gd4/3Y2/3(Gly)6(H2O)4](ClO4)6·5H2O, 1.82 kJ mol−1 and 5.5 J K−1 mol−1 for [ErY(Gly)6(H2O)4](ClO4)6·5H2O, respectively. Thermal decompositions of the two coordination compounds were studied through the thermogravimetry (TG). Possible mechanisms of the decompositions are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号