首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we propose a splitting positive definite mixed finite element method for the approximation of convex optimal control problems governed by linear parabolic equations, where the primal state variable $y$ and its flux $σ$ are approximated simultaneously. By using the first order necessary and sufficient optimality conditions for the optimization problem, we derive another pair of adjoint state variables $z$ and $ω$, and also a variational inequality for the control variable $u$ is derived. As we can see the two resulting systems for the unknown state variable $y$ and its flux $σ$ are splitting, and both symmetric and positive definite. Besides, the corresponding adjoint states $z$ and $ω$ are also decoupled, and they both lead to symmetric and positive definite linear systems. We give some a priori error estimates for the discretization of the states, adjoint states and control, where Ladyzhenkaya-Babuska-Brezzi consistency condition is not necessary for the approximation of the state variable $y$ and its flux $σ$. Finally, numerical experiments are given to show the efficiency and reliability of the splitting positive definite mixed finite element method.  相似文献   

2.
以边界位移函数方法为基础,推导了矩形层合板多种边界条件下的非齐次状态方程和定解条件.将非齐次状态方程增维齐次化,可避免积分时可能出现的数值病态问题,并简化了计算过程.边界位移沿厚度方向非线性分布假设可以适当减少数值结果收敛要求的薄层数.数值结果可作为其它数值法或半解析法的标准解.该文的方法可为分析更加复杂的边界条件问题提供参考.  相似文献   

3.
Optimality conditions and duality are studied for convex parabolic boundary control problems with control constraints and pointwise state constraints. Caused by the presence of state constraints, the multipliers in the optimality conditions and the variables in the dual problem are Borel measures. These measures appear as data in the adjoint partial differential equation. It is shown that its solution as well as the restriction of its solution to the boundary is summable.  相似文献   

4.
A maximum principle for the open-loop optimal control of a vibrating system relative to a given convex index of performance is investigated. Though maximum principles have been studied by many people (see, e.g., Refs. 1–5), the principle derived in this paper is of particular use for control problems involving mechanical structures. The state variable satisfies general initial conditions as well as a self-adjoint system of partial differential equations together with a homogeneous system of boundary conditions. The mass matrix is diagonal, constant, and singular, and the viscous damping matrix is diagonal. The maximum principle relates the optimal control with the solution of the homogeneous adjoint equation in which terminal conditions are prescribed in terms of the terminal values of the optimal state variable. An application of this theory to a structural vibrating system is given in a companion paper (Ref. 6).  相似文献   

5.
Summary We consider dynamical systems described by asymptotically stable equations of evolution and we apply to them feedback laws, optimal in stationary conditions with respect to a usual quadratic functional. Then we study the asymptotic stability of the modified equations of evolution and the convergence of the state variables to the optimal stationary states. We get positive results in the following cases: abstract parabolic equations, heat equation with boundary control and observation, convex constraints on the control variable, non linear equations involving gradients of some convex functions.

Entrata in Redazione il 22 luglio 1974.  相似文献   

6.
This paper deals with optimal control problems described by higher index DAEs. We introduce a class of these problems which can be transformed to index one control problems. For this class of higher index DAEs, we derive first-order approximations and adjoint equations for the functionals defining the problem. These adjoint equations are then used to state, in the accompanying paper, the necessary optimality conditions in the form of a weak maximum principle. The constructive way used to prove these optimality conditions leads to globally convergent algorithms for control problems with state constraints and defined by higher index DAEs.  相似文献   

7.
In this paper, two meshless schemes are proposed for solving Dirichlet boundary optimal control problems governed by elliptic equations. The first scheme uses radial basis function collocation method (RBF-CM) for both state equation and adjoint state equation, while the second scheme employs the method of fundamental solution (MFS) for the state equation when it has a zero source term, and RBF-CM for the adjoint state equation. Numerical examples are provided to validate the efficiency of the proposed schemes.  相似文献   

8.
We establish necessary and sufficient conditions of near-optimality for nonlinear systems governed by forward-backward stochastic differential equations with controlled jump processes (FBSDEJs in short). The set of controls under consideration is necessarily convex. The proof of our result is based on Ekeland’s variational principle and continuity in some sense of the state and adjoint processes with respect to the control variable. We prove that under an additional hypothesis, the near-maximum condition on the Hamiltonian function is a sufficient condition for near-optimality. At the end, as an application to finance, mean-variance portfolio selection mixed with a recursive utility optimization problem is given. Mokhtar Hafay  相似文献   

9.
We investigate the effectiveness of the Optimal Homotopy Asymptotic Method (OHAM) in solving time dependent partial differential equations. To this effect we consider the homogeneous, non-homogeneous, linear and nonlinear Klein-Gordon equations with boundary conditions. The results reveal that the method is explicit, effective, and easy to use.  相似文献   

10.
We study the numerical approximation of Neumann boundary optimal control problems governed by a class of quasilinear elliptic equations. The coefficients of the main part of the operator depend on the state function, as a consequence the state equation is not monotone. We prove that strict local minima of the control problem can be approximated uniformly by local minima of discrete control problems and we also get an estimate of the rate of this convergence. One of the main issues in this study is the error analysis of the discretization of the state and adjoint state equations. Some difficulties arise due to the lack of uniqueness of solution of the discrete equations. The theoretical results are illustrated by numerical tests.  相似文献   

11.
This paper presents a high-Reynolds number (high-Re) approach to the adjoint Navier-Stokes-Fourier equations based upon modified high-Re boundary conditions for buoyancy-driven flows. For reasons of efficiency, the computational framework adheres to the continuous adjoint method using a frozen-turbulence assumption. Opposed to the state of the art, the present model uses a high-Re model for the primal equations and a high-Re model for the adjoint equations. The adjoint high-Re model can easily be implemented and be used for flow problems where wall functions are needed. The impact of this approach is an improved consistency of primal and adjoint equations which leads to stable and realistic shape optimisation results for industrial flows. (© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
Boundary value problems (BVPs) for partial differential equations are common in mathematical physics. The differential equation is often considered in simple and symmetric regions, such as a circle, cube, cylinder, etc., with global and separable boundary conditions. In this paper and other works of the authors, a general method is used for the investigation of BVPs which is more powerful than existing methods, so that BVPs investigated by the method can be considered in anti-symmetric and arbitrary regions surrounded by smooth curves and surfaces. Moreover boundary conditions can be local, non-local and global. The BVP is expanded in a convex and bounded region D in a plane. First, by generalized solution of the adjoint of the Poisson equation, the necessary boundary conditions are obtained. The BVP is then reduced to the second kind of Fredholm integral equation with regularized singularities.  相似文献   

13.
研究了由Teugels鞅和与之独立的多维Brown运动共同驱动的正倒向随机控制系统的最优控制问题. 这里Teugels鞅是一列与L\'{e}vy 过程相关的两两强正交的正态鞅 (见Nualart, Schoutens 在2000年的结果). 在允许控制值域为一非空凸闭集假设下, 采用凸变分法和对偶技术获得了最优控制存在所满足的充分和必要条件. 作为应用, 系统研究了线性正倒向随机系统的二次最优控制问题(简记为FBLQ问题), 通过相应的随机哈密顿系统对最优控制 进行了对偶刻画. 这里的随机哈密顿系统是由Teugels鞅和多维Brown运动共同驱动的线性正倒向随机微分方程, 其由状态方程、伴随方程和最优控制的对偶表示共同来构成.  相似文献   

14.
We formulate an S-I-R (Susceptible, Infected, Immune) spatiotemporal epidemic model as a system of coupled parabolic partial differential equations with no-flux boundary conditions. Immunity is gained through vaccination with the vaccine distribution considered a control variable. The objective is to characterize an optimal control, a vaccine program which minimizes the number of infected individuals and the costs associated with vaccination over a finite space and time domain. We prove existence of solutions to the state system and existence of an optimal control, as well as derive corresponding sensitivity and adjoint equations. Techniques of optimal control theory are then employed to obtain the optimal control characterization in terms of state and adjoint functions. To illustrate solutions, parameter values are chosen to model the spread of rabies in raccoons. Optimal distributions of oral rabies vaccine baits for homogeneous and heterogeneous spatial domains are compared. Numerical results reveal that natural land features affecting raccoon movement and the relocation of raccoons by humans can considerably alter the design of a cost-effective vaccination regime. We show that the use of optimal control theory in mathematical models can yield immediate insight as to when, where, and what degree control measures should be implemented.  相似文献   

15.
This paper is concerned with recovery type a posteriori error estimates of fully discrete finite element approximation for general convex parabolic optimal control problems with pointwise control constraints. The time discretization is based on the backward Euler method. The state and the adjoint state are approximated by piecewise linear functions and the control is approximated by piecewise constant functions. We derive the superconvergence properties of finite element solutions. By using the superconvergence results, we obtain recovery type a posteriori error estimates. Some numerical examples are presented to verify the theoretical results.  相似文献   

16.
The differential perturbative method was applied to the sensitivity analysis for waterhammer problems in hydraulic networks. Starting from the classical waterhammer equations in a single-phase liquid with friction (the direct problem) the state vector comprising the piezometric head and the velocity was defined. Applying the differential method the adjoint operator, the adjoint equations with the general form of their boundary conditions, and the general form of the bilinear concomitant were calculated for a single pipe. Considering that any hydraulic network can be built by connecting different components (reservoirs, valves, pumps, tees, etc.) through pipes, the adjoint relationships for any component, as well as the final contribution to the bilinear concomitant, were calculated. Moreover, an analogy was established in which transmission and reflection coefficients can be derived for any adjoint component. The importance or adjoint function was analyzed when the piezometric head or velocity at a given position and time is chosen as the response functional. In this case, it is shown that the importance function is represented by delta-functions travelling along the hydraulic network with the propagation speed. The calculation of the sensitivity coefficients takes into account the cases in which the parameters under consideration influence the initial condition. For these cases, the calculation can be performed by solving sequentially two perturbative problems: the first one is non-steady, while the second one is steady, with an appropriate selection of a weight function coming from the unsteady perturbative problem. The discretized adjoint equations and the corresponding boundary conditions were programmed and solved by using the method of characteristics. As an example, a constant-level tank connected through a pipe to a valve discharging to atmosphere was considered. The corresponding sensitivity coefficients due to the variation of different parameters by using both the differential method and the response surface generated by the computer code WHAT, solver of the direct problem, were also calculated. The results obtained with these methods show excellent agreement.  相似文献   

17.
In the present paper we consider the minimization of gradient tracking functionals defined on a compact and fixed subdomain of the domain of interest. The underlying state is assumed to satisfy a Poisson equation with Dirichlet boundary conditions. We proof that, in contrast to the situation of gradient tracking on the whole domain, the shape Hessian is not strictly H 1/2-coercive at the optimal domain which implies ill-posedness of the shape problem under consideration. Shape functional and gradient require only knowledge of the Cauchy data of the state and its adjoint on the boundaries of the domain and the subdomain. These data can be computed by means of boundary integral equations when reformulating the underlying differential equations as transmission problems. Thanks to fast boundary element techniques, we derive an efficient algorithm to solve the problem under consideration.  相似文献   

18.
In this paper we present a boundary integral equation method for the numerical conformal mapping of bounded multiply connected region onto a parallel slit region. The method is based on some uniquely solvable boundary integral equations with adjoint classical, adjoint generalized and modified Neumann kernels. These boundary integral equations are constructed from a boundary relationship satisfied by a function analytic on a multiply connected region. Some numerical examples are presented to illustrate the efficiency of the presented method.  相似文献   

19.
ABSTRACT

In this paper, we study a constrained utility maximization problem following the convex duality approach. After formulating the primal and dual problems, we construct the necessary and sufficient conditions for both the primal and dual problems in terms of forward and backward stochastic differential equations (FBSDEs) plus some additional conditions. Such formulation then allows us to explicitly characterize the primal optimal control as a function of the adjoint process coming from the dual FBSDEs in a dynamic fashion and vice versa. We also find that the optimal wealth process coincides with the adjoint process of the dual problem and vice versa. Finally we solve three constrained utility maximization problems, which contrasts the simplicity of the duality approach we propose and the technical complexity of solving the primal problem directly.  相似文献   

20.
We study the superconvergence property of fully discrete finite element approximation for quadratic optimal control problems governed by semilinear parabolic equations with control constraints. The time discretization is based on difference methods, whereas the space discretization is done using finite element methods. The state and the adjoint state are approximated by piecewise linear functions and the control is approximated by piecewise constant functions. First, we define a fully discrete finite element approximation scheme for the semilinear parabolic control problem. Second, we derive the superconvergence properties for the control, the state and the adjoint state. Finally, we do some numerical experiments for illustrating our theoretical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号