首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
多级PIN限幅器高功率微波效应研究   总被引:1,自引:0,他引:1       下载免费PDF全文
基于PIN二极管电热自洽耦合模型,构建了两级PIN限幅器高功率微波(HPM)效应电路模型。根据模拟模型设计加工了两级限幅器实验样品,限幅器输入、输出特性注入实验数据与模拟计算结果基本一致,验证了多级限幅器模型的有效性,表明该多级PIN限幅器模型能够应用于HPM效应模拟。针对不同HPM波形参数进行了HPM效应模拟,计算结果表明:随着注入功率的增大,脉宽增宽,前级厚I层PIN二极管结温升比后级薄I层PIN二极管结温升要高,因此厚I层PIN二极管更易受到损伤;而频率和前沿参数对结温升影响较小。  相似文献   

2.
PIN限幅器PSpice模拟与实验研究   总被引:3,自引:9,他引:3       下载免费PDF全文
 从PIN二极管基区双极载流子扩散方程出发,通过拉普拉斯变换求解得到PIN二极管子电路模型,从而通过PSpice软件瞬态数值模拟得到了PIN限幅器的尖峰泄漏、平顶泄漏与脉冲功率、上升时间关系。对于I层厚度一定的限幅器,模拟与实验表明脉冲前沿越大,尖峰泄漏功率插入损耗越大,脉冲前沿过缓则可能没有尖峰泄漏现象;尖峰泄漏功率随着输入功率的增加而变大,但尖峰泄漏功率插损也随之增大;尖峰脉冲宽度与I层厚度、输入功率及脉冲前沿均有关系。限幅器尖峰泄漏与平顶泄漏模拟结果与实验数据基本一致。  相似文献   

3.
PIN限幅器微波脉冲热损伤温度特性   总被引:3,自引:3,他引:0       下载免费PDF全文
分析了微波对PIN限幅器的热损伤机理,基于器件物理模拟分析法,利用Sentaurus-TCAD仿真器建立了器件微波热效应模型,研究了频率为5.3,7.5,9.4 GHz的微波信号作用下,器件损伤过程中温度瞬态变化规律和瞬态温度分布规律。结果表明:PIN限幅器尖峰泄露阶段器件温度上升较快;稳态限幅后温度上升缓慢;临近热击穿状态,器件进入热电失控状态,峰值温度快速上升,最终器件因温度过高烧毁;PIN二极管中的I区或P区与I区之间的结边缘处,较容易烧毁。对PIN限幅器进行大功率微波注入实验,器件损伤实验结果与数值模拟结果吻合较好。  相似文献   

4.
高铭萱  张洋  张军 《物理学报》2024,(6):329-339
基于双级限幅器中两个PIN二极管的多物理场仿真模型与限幅器中其他电路元器件的SPICE模型,搭建了Si基双级PIN限幅器的场路协同仿真模型,利用这一模型对微波脉冲作用下限幅器中两级PIN二极管的温度响应特性进行了仿真.在此基础上对限幅器在不同频率、幅值微波脉冲信号作用下内部发生熔化现象所需的时间与能量进行了仿真,并对这一过程进行了机理分析与响应特性规律总结.仿真结果表明,当限幅器中第一级PIN二极管内部最高温度已达到材料熔点时,第二级PIN二极管的温度变化幅度较小.限幅器内部发生熔化现象所消耗的时间与能量随信号幅值、频率的变化呈现出规律性关系,发生熔化现象所需的时间随信号幅值或频率的提升而减小;发生熔化现象所需的能量随频率的提升而降低,随幅值的变化存在极大值点;限幅器的响应特性对信号参数表现出了不同的敏感性.  相似文献   

5.
PIN限幅二极管结温对尖峰泄漏的影响   总被引:5,自引:4,他引:1       下载免费PDF全文
 建立了PIN二极管的Pspice子电路模型和热模型,模拟了PIN限幅器的瞬态特性。应用FORTRAN语言调用Pspice的仿真数据,计算了PIN二极管结温随输入脉冲变化的情况,讨论了PIN二极管的物理参数与温度的关系,结合结温的升高修改了Pspice软件中PIN二极管的子电路模型参数,模拟得到了不同结温下的瞬态响应曲线以及尖峰泄漏功率与脉冲频率、上升沿、结温的关系。模拟结果表明:输入脉冲的幅度越大,结温增长越快;在不同脉冲频率和上升沿情况下,升高的结温会导致限幅器尖峰泄漏功率增大。  相似文献   

6.
大功率PIN二极管限幅器对电磁脉冲后沿响应的分析   总被引:5,自引:3,他引:2  
 利用PSpice电路模型数值计算了阶跃电磁脉冲后沿作用下大功率PIN二极管限幅器的瞬态响应。发现大功率限幅器在阶跃脉冲后沿作用下会输出反向脉冲,其幅度可能与限幅器尖峰泄漏的幅值相当甚至更大,这可能是一种新的影响限幅器性能的安全隐患。分析发现:反向脉冲幅度在一定范围内随激励脉冲持续时间的增加、幅度的加大、后沿时间的变短而变大;随射频扼流电感值的增加而减小。  相似文献   

7.
通过T-CAD软件建立了PIN二极管的电学模型和热学模型,模拟了PIN二极管的稳态与瞬态特性。研究了PIN二极管器件在正反偏压和脉冲电压下的电学特性及热学特性,讨论了PIN二极管的I层厚度与温度的关系,模拟得到了不同I层厚度的稳态与瞬态响应曲线、得到了与器件内部温度的关系。模拟结果表明:随着I层厚度的增加,器件内部最高温度增长减慢,器件内部最高温度区由结区位置向器件的中间位置移动。  相似文献   

8.
基于器件物理模拟分析法研究PIN限幅器二极管的微波脉冲热效应,利用Sentaurus-TCAD仿真器建立了PIN二极管二维多物理场仿真模型,研究了在5.3,7.5,9.4 GHz的微波脉冲作用下,不同Ⅰ层厚度的二极管模型的峰值温度变化。仿真结果表明:Ⅰ层厚度对PIN二极管微波脉冲热效应的影响分两个阶段,拐点前厚度增加,峰值温度提高,拐点后厚度增加峰值温度降低;一定范围内微波脉冲频率的变化对拐点影响不明显。  相似文献   

9.
PIN二极管的高功率微波响应   总被引:5,自引:3,他引:2  
 利用自行编制的半导体器件模拟程序mPND1D(采用时域有限差分方法,求解器件内部载流子所满足的非线性、耦合、刚性方程组),对PIN二极管微波限幅器在高功率微波激励下的响应进行了计算,比较了不同条件下的计算结果,并对二极管微波响应截止频率作了探讨。计算结果表明:随着激励源幅值的升高,器件截止频率增大;随着脉冲长度减小,器件截止频率降低;随着器件恒定温度值升高,截止频率下降。  相似文献   

10.
袁月乾  陈自东  马弘舸  秦风 《强激光与粒子束》2020,32(6):063003-1-063003-6
基于PIN限幅器的等效电路模型,构建了PIN限幅器HPM效应ADS等效电路仿真模型,利用HPM注入实验和等效电路仿真相结合的方法,研究了单个微波脉冲作用下PIN限幅器的响应规律,获取了HPM作用结束后限幅器限幅持续时间与注入脉冲功率、脉宽的对应关系,并对限幅器的限幅持续过程进行了分析。仿真与实验结果表明:PIN限幅器限幅持续时间随着微波脉冲功率和脉宽的增大而变大,实验和仿真结果趋势一致,该研究使用的ADS等效电路模型可以应用于PIN限幅器的高功率微波瞬态响应特性分析研究。  相似文献   

11.
报道了BSA-SDS-Ag聚合物纳米微粒的制备及水凝胶的性质,用X射线衍射(XRD)、透射电镜(TEM)、傅里叶变换红外(FT-IR)光谱考察了这种聚合物微粒的结构,微粒粒径32nm左右,用UV/Vis光谱及SEM考察了冰凝胶的性,表明Ag^ 离子先与BSA产生化学键合,再学原了Ag粒,进行聚合成网状结构的聚合物。  相似文献   

12.
Simulated contours of self-reversed lines of Tl at 535 nm (72S1/2−62P3/2) and 378 nm (72S1/2-62P1/2) in alternating-current closed-arc radiation in mercury vapor with an addition of Tll were compared with experimental contours. It is shown that while a single self-reversed contour has many different sets of model parameters that ensure coincidence of experimental and calculated profiles, in the case of operation with a large data file of contours that correspond to different directions of observation along chords perpendicular to the discharge axis, and with different lines that have a common level, such a set of parameters becomes virtually unique. Instantaneous spatial distributions of Hg and Tl atoms in the ground state and of Tl atoms in the 62P3/2 state are determined and the parameters of the van der Waals broadening of the 72S1/2 level are found. It is shown that a considerable “red” shift of absorption contours in the outer layers of the discharge is observed. The results obtained contradict the presumed existence of local thermodynamic equilibrium in the given discharge. Reported at the Conference “Plasma Physics and Plasma Technologies,” Minsk, September 15–19, 1997 Petrozavodsk State University, 33, Lenin Ave, Petrozavodsk, 185640, Russia. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 65, No. 5, pp. 761–768, September–October, 1998.  相似文献   

13.
傅里叶望远镜外场实验性能改进和结果分析   总被引:4,自引:0,他引:4  
为了实现对傅里叶望远镜成像系统更接近实际的仿真,改进了外场实验系统结构。采用反射式目标,利用准直扩束镜替代空间滤波器和准直透镜,使用大靶面电荷耦合器件作为监视器。在无大气和包含200m水平大气两种情况下,分别对2.5mm的4种不同空间频谱分布目标进行实验。实验选用9×9,17×17,33×33和65×65傅里叶分量分别进行重构。最高成像角分辨率为3.5″。结果表明含大气与无大气重构结果的Strehl比值相近,从而证明傅里叶望远镜成像系统能够克服下行链路低阶大气扰动的影响。  相似文献   

14.
It is shown that the integral convolution of the first derivatives of Lorentz and Gauss functions can be replaced, with a high degree of accuracy, by their linear combination. Here, a unique transition from approximation to convolution parameters and back is possible. Use of such a linear combination in calculations of line contours allows a gain in the calculation speed by 1–2 orders of magnitude. Research Institute of Radiative Medicine, 23, Masherov Ave., Minsk, 220600, Belarus. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 64, No. 1, pp. 42–44, January–February, 1997.  相似文献   

15.
旋转波片Stokes偏振仪是最常用的测量光束偏振态的仪器。波片快轴方位误差是影响旋转波片Stokes偏振仪的主要误差源之一。为了研究波片方位偏差对测量精度的影响,提出了一种描述波片快轴方位误差向最终的偏振测量误差传递的数学模型,并引入协方差矩阵法表征偏振测量误差。根据这一模型,获得最优的偏振仪配置参数。在推导过程中,假设波片方位误差服从同一高斯分布。基于此误差模型,得到如下结论:(1)由波片方位误差引入的测量误差与光强测量次数N成反比;(2)测量误差独立于入射光强度,但是依赖于入射光偏振态(s1, s2, s3)和波片的位相延迟量δ;(3)波片位相延迟量在(103.22°, 116.13°)范围内时波片方位误差引入的测量误差最小。最后,经过仿真实验证明,所得解析结果与仿真模拟结果相一致。  相似文献   

16.
 在采用体积相加原理计算混合物物态方程的基础上,建立了一种物理模型确定混合物温度。根据混合物中各组分温度和压强平衡条件,采用压强-密度迭代方法计算给出混合物物态方程,编制了两种组分的混合物物态方程计算程序。为检验建立的温度模型的合理性及程序的有效性,分析了不同密度、温度状态的氢(H2)和钨(W)组成的混合物状态参量,计算了以下情形及其组合情形的混合物物态方程:H2和W以不同质量比混合;质量比固定,单组分状态不同;温度区间和密度区间不同。研究表明:实际应用中在建立的混合物温度模型基础上确定的混合物物态方程是合理的。  相似文献   

17.
星光掩星技术是利用恒星光谱进行地球及其他行星大气痕量成分密度、温度、气溶胶等测量的有效手段。该探测原理主要是根据不同的大气成分在恒星光谱的不同位置上表现出不同的吸收特征,具体表现在:紫外波段可进行臭氧、氧气、氢气等的测量,可见光谱段可探测二氧化氮、三氧化氮、氧气等,红外可探测水蒸气、气溶胶、甲烷、二氧化碳、氧气等。星光掩星的实现过程为:当LEO卫星和恒星分别位于地球的两侧时,恒星发射的光经过地球大气的吸收、散射等作用,被另一侧的LEO所接收,即构成掩星观测。根据光谱流量得到恒星的视星等范围,给出恒星在天球坐标系中的分布和不同的光谱型,以及利用各光谱型可探测的大气成分,再利用恒星和LEO卫星在地固坐标系中的相对位置,进行恒星-LEO星光掩星轨道观测模拟,基本流程为:首先读取LEO卫星的轨道位置以及目标恒星的位置,设置24 h的模拟时间,其次判断是否处于掩星状态,当掩星开始时,计算并输出掩星发生的经纬度、速度等,直至模拟时间结束。其中涉及恒星从天球坐标系转换到地固系的过程, LEO卫星轨道、掩星切点经纬度等的计算。根据模拟流程,计算并分析掩星事件的日观测量、全球分布、持续时间以及漂移速度等,得到以下结果:(1)目标恒星在全天区都有一定数量的分布且具有不同的光谱型,可进行臭氧、二氧化氮等成分的探测;(2)在对星光掩星进行24 h的轨道模拟过程中,日观测量为5 563次,其中包括2 737次上升掩星, 2 826次下降掩星;(3)从全球分布来看,掩星事件主要分布在低纬度,两极最少,其他纬度数量相当,且经度方向分布均匀;(4)根据方位角的分布,正常掩星占比为78.25%,持续时间平均为1.5 min,切点水平漂移在18~600 km;(5)21.75%的侧面掩星事件,其较正常掩星来说,持续时间长,切点的水平漂移速度大,方位角变化也大。该结果为卫星轨道设计和探测载荷设计提供理论指导。  相似文献   

18.
振动光谱(红外光谱和拉曼光谱)技术与化学计量学相结合的方法对微生物进行分类、鉴定和无损检测,该方法快速简便、准确度高、仅需微量样品和少量化学试剂、对样品本身没有损害。介绍了振动光谱技术在微生物鉴定检测中的工作原理、关键技术和应用,并对该方法存在的问题和研究前景进行了分析和展望。  相似文献   

19.
在磁场作用下水的特性的变化和它的变化机理   总被引:7,自引:0,他引:7  
我们研究了在磁场作用下水的光学性质和电学性质等的变化,实验发现它们的这些特性和未受磁场作用的水有重大改变特别是在红外光谱和拉曼光谱中的变化更加明显,这种现象就称为水的磁化。我们从水的中红外光谱得知在3000~3800 cm-1的范围内有奇特的六个峰值存在,从水分子结构和红外光谱的特性出发了解到它们分别代表了自由水分子的OH键的对称与反对称的振动,众多水分子通过氢键连接而成的线性链和环形链的OH键的对称与反对称振动,于是从这个实验我们看到了在这个水中存在有众多水分子结合成的环形氢键链的存在。我们用水分子的极化特性,一阶相变的特性和实验进一步证实了这些环形链的客观存在,根据质子或氢离子在氢键系统中传递理论得知在磁场的罗仑兹力作用下处于水中环形氢键链中质子能够进行传导产生环形电流.这些环形电流象一个分子电流或是个小磁体,它们能彼此相互作用或与外加磁场相互作用,从而改变了水分子的分布和结构状态,导致了水的一些特性的变化,这就是水的磁化的分子机理,我们用这个机理解释了我们从实验中所发现的磁处理过的水的特性如饱和效应和记忆效应等,因此这是非常有趣的实验和现象.  相似文献   

20.
We investigate the luminescent properties (radiation spectrum, polarized spectrum) of the monoanions of Zn-octaethylphlorin, which is an intermediate product of the reduction, reaction of porphyrins. An oscillator model is presented that includes three electronic oscillators, with a long-wave one being oriented perpendicularly to the remaining two. The lifetime of the excited singlet state τ=30±15 nsec is estimated. Institute of Molecular and Atomic Physics, Academy of Sciences of Belarus, 70, F. Skorina Ave., Minsk, 220072, Belarus. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 64, No. 3, pp. 329–332, May–June, 1997.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号