首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 875 毫秒
1.
采用固相法制备了Ba0.96(Bi0.5K0.5)0.04TiO3-xCuO(x=0 ~0.05)陶瓷,通过XRD、SEM和阻抗分析仪等测试手段研究了CuO掺杂对Ba0.96(Bi0.5K0.5) 0.04TiO3陶瓷烧结温度、相组成、显微结构和介电性能的影响.结果表明:在x=0 ~0.05掺杂浓度范围内,所有陶瓷样品均为钙钛矿结构,且没有第二相的生成.当x≤0.03时,CuO与Ba0.96(Bi0.5K0.5)0.04TiO3形成固溶体,Cu2进入晶格取代Ti4的位置.在x=0.02时,陶瓷样品的四方率c/a达到最大,居里温度Tc最高为148.5℃.当x≥0.04时,过量的CuO在晶界处形成液相,显著降低烧结温度.当x=0.05时,烧结温度降为1275℃,由于液相的产生,陶瓷样品致密度提高,内部缺陷减少,介电损耗最小.在掺杂CuO的陶瓷样品中,介电常数先增大后减小,在x=0.01时达到最大.  相似文献   

2.
采用传统固相烧结方法制备出0.94(Ri0.5+xNa0.5-x)TiO3-0.06BaTiO3(BNBT6)二元系无铅压电陶瓷(x分别为0,0.08;,0.12;,0.16;,0.24;和0.50;摩尔分数),系统地研究了不同Na/Bi配比对BNT基陶瓷材料物相结构、显微组织和压电、介电性能的影响.结果表明:添加不同的Na/Bi,所制备的BNBT6压电陶瓷组织分布均匀、致密度高,存在三方-四方共存的准同型相界结构,且不同的Na/Bi配比不影响陶瓷的相结构,但其烧结性能及电性能与Na/Bi配比密切相关,当x=0.16;时,BNBT6陶瓷样品的性能最佳,相对密度达到97;,在1 kHz的测试频率下,BNBT6陶瓷样品的压电常数d33为138 PC/N、介电常数εr为1486、介电损耗tanδ为2.1;、机械品质因数Qm为217.  相似文献   

3.
采用传统固相反应法制备了0.94(Na0.5 Bi0.) TiO3-0.06BaTiO3-3wt; Bi2 O3-xwt; Nd2O3(x=0,1.5)陶瓷.研究了Bi3+和Nd3+掺杂对0.94 (Na0.5 Bi05)TiO3-0.06BaTiO3陶瓷结构和电学性能的影响.结果表明,Bi2O3和Nd2O3掺杂不影响0.94(Na0.5 Bi0.5) TiO3-0.06BaTiO3的钙钛矿结构.3wt; Bi2O3添加使得铁电陶瓷0.94(Na0.5Bi05) TiO3-0.06BaTiO3转变为反铁电陶瓷.反铁电陶瓷0.94(Na0.5Bi0.5)TiO3-0.06BaTiO3-3wt; Bi2O3具有更高的相转变温度Tm(~320℃).Nd2O3添加不改变0.94(Na0.5 Bi0.5) TiO3-0.06BaTiO3-3wt; Bi2O3陶瓷的反铁电态,但增强了陶瓷的介电性能和弛豫性能.  相似文献   

4.
采用固相法制备Ba1-x(Na0.5Bi0.5)xZr01Ti0.O3(x=0,0.05,0.1,0.15,0.2)陶瓷,并研究Bi、Na共同掺杂对BaZr01Ti0.9O3陶瓷结构、相组成、介电和铁电性能的影响.研究表明,Bi、Na共掺杂可以降低BaZr01Ti0.9O3陶瓷的烧结温度,并且在现有的掺杂水平下,所得陶瓷均为单一钙钛矿结构.陶瓷的相对介电常数在x=0.05时,由未掺杂的800增至最大值1700左右.陶瓷的介电损耗随Bi、Na掺杂量的增加,呈增加趋势.铁电性研究表明,随Bi、Na掺杂量的增加,存在漏电流增大的趋势,使得铁电性恶化,当含量超过0.1后呈现非铁电性.由以上可知,掺杂少量的Bi、Na,可以在一定程度上提高BaZr0.1Ti0.9O3陶瓷的介电性.  相似文献   

5.
采用传统固相法制备了0.6(Na0.5Bi0.5)TiO3-0.4(Bi0.1Sr0.9)TiO3陶瓷(即6BNT-4BST-9),研究了其相结构、铁电性能和储能特性;且利用复阻抗谱和电模量谱分析了其电性能.结果表明:(1)6BNT-4BST-9陶瓷在室温时具有三方和四方共存的相结构;P-E回线和S-E曲线分析表明陶瓷中由非极性四方相占据主导.(2)6BNT-4BST-9陶瓷具有较大Pmax~18.2μC/cm2,和较小的Pr~1.0μC/cm2;它在低场下的储能特性为W1=0.313 J/cm3,η=85.3;(@40kV/cm).(3)M″-f和(-Z″)-f曲线在同一位置的特征峰表明对于6BNT-4BST-9陶瓷只有一种材料微区对电性能起主导.6BNT-4BST-9陶瓷具有负温度系数的电阻-温度特性;根据Arrhenius Law计算的激活能Ea=1.48 eV,表明该陶瓷具有电子导电特征.  相似文献   

6.
采用固相法制备了Na0.5Bi85Ti7O27+xmol; MnCO3(NBTO-Mn-x,x=0.00,3.00,5.00,7.00)铋层状压电陶瓷材料,系统研究了MnCO3的引入对Na0.5Bi8Ti7O27共生结构铋层状陶瓷物相结构、微观结构以及电性能的影响.结果表明:所有样品均为单一的共生结构铋层状陶瓷材料,Mn的引入没有改变其物相结构;适量的Mn掺入能明显降低Na0.5Bi8.5Ti7O27陶瓷的介电损耗tanδ,改善其电性能,当x=5.00时,其综合性能最佳:p、d33、Qm、kp和k1分别为p=6.90 g/cm3、d33=19 pC/N、Qm=3230、kp=11.00;、k11=13.40;,该组分陶瓷样品具有良好的热稳定性.  相似文献   

7.
采用传统的固相烧结法,制备了一系列的Sm3掺杂Na0.5Bi0.5TiO3无铅压电陶瓷(NBT∶ xSm3,0.005≤x≤0.04).利用X射线衍射仪和荧光分光光度计分别对NBT∶ xSm3+陶瓷样品的物相结构和光致发光性能以及热稳定性进行了分析.结果 表明,所有样品均为纯的三方钙钛矿结构.样品的激发光谱在480 nm有很强的激发峰,与蓝光LED芯片匹配.发射光谱包含位于563 nm、597 nm、645 nm、709 nm处的四个发射峰,分别归属于Sm3+的4G5/2→6HJ/2(J=5、7、9、11)跃迁,其中发射主峰位于597 nm,呈现橙红色发光.当Sm3+含量为0.02 mol时发光性能最佳.当温度范围在30 ~210℃之间时,NBT∶0.02Sm3陶瓷样品的发光性能具有良好的热稳定性  相似文献   

8.
采用溶胶-凝胶法制备(1-x)Na0.5Bi0.5 TiO3-xK0.5Bi0.5TiO3体系无铅压电陶瓷.XRD分析表明,用溶胶-凝胶法可以在650℃下合成具有钙钛矿结构的(1-x)Na0.5Bi0.5TiO3-xK0.5Bi0.5TiO3粉体,且在x=0.18~0.30之间存在三方-四方准同型相界(MPB).陶瓷的压电性能参数表明,该体系在MPB组成范围内具有最佳的压电性能:x=0.30时,压电常数d33达到最大值(d33=150 Pc·N-1),平面机电耦合系数kp与介电常数εH33T/ε0均在x=0.26时达到最大值,分别为36.7;和1107.  相似文献   

9.
采用固相法制备了0.96(K0.49 Na0.51)(Nb0.97-xTa0.03Sbx) O3-0.04Bi0.5(Na0.8K0.2)0.5ZrO3(0.96KNNTSx-0.04BNKZ,x=0,0.01,0.02,0.03,0.04)无铅压电陶瓷,研究了Sb掺杂量对0.96KNNTSx-0.04BNKZ陶瓷相结构、微观结构和电性能的影响规律.X射线衍射(X-ray Diffraction,XRD)分析结果表明:0.96KNNTSx-0.04BNKZ陶瓷具有纯钙钛矿结构,随着Sb掺杂量x的增加,陶瓷由正交-四方两相共存逐渐转变为四方相,在x≤0.01时,陶瓷为正交-四方两相共存的多型相转变(Polymorphic Phase Transition,PPT)结构,而当x≥0.02时,陶瓷则转变为四方相结构.在PPT向四方相转变的组成边界x=0.02处,陶瓷具有优异的电性能:压电常数d33=345 pC/N,机电耦合系数kp=39.2;,机械品质因数Qm=51,介电常数ε33T/ε0=1520,介电损耗tanδ =2.7;,剩余极化强度Pr=15.4 μC/cm2,矫顽场Ec =1.09kV/mm,居里温度Tc=275℃.  相似文献   

10.
采用弛豫铁电体(Sr0.7Bi0.2)TiO3与铁电体(Bi0.5Na0.5)TiO3构建了的新型二元系BNT基无铅陶瓷材料:(1-x)(Bi0.5Na0.5)TiO3-x(Sr0.7Bi0.2)TiO3(记为BNT-xSBT,x=10mol;、20mol;、30mol;和40mol;).通过传统固相法进行制备,研究了(Sr0.7 Bi0.2)TiO3取代对其结构、相变、铁电性能和储能特性的影响.结果表明,室温所测BNT-xSBT陶瓷为准立方结构;介温和铁电性则证实其为极性三方和非极性四方共存相结构.A位复合占位的BNT-xSBT陶瓷是典型的弛豫铁电体,其Tm随x的增大而减小.低温(Td)处的介电反常源于结构(三方和四方)起伏所引起的缓慢转变过程.(Sr0.7 Bi0.2)TiO3取代量增大时,其Td降低,四方相增多,并伴随非极性微区增长;并导致BNT-xSBT陶瓷的铁电性减弱和电滞回线变形.x=30mol;时,BNT-xSBT陶瓷具有大的Pmax=26.8μC/cm2、小的Pr=1.4μC/cm2,和较好的储能特性:W=0.74 J/cm3,η=68.5;(@70 kV/cm).  相似文献   

11.
采用高温自助熔剂法制备了(Na0.5Bi0.5) TiO3-(K0.5Bi0.5) TiO3(简称:NBT-KBT)无铅铁电单晶,晶体尺寸为5mm×6 mm×1 mm.利用X射线衍射(XRD)手段研究了NBT-KBT单晶的相结构,结果表明晶体样品为钙钛矿四方相结构.Raman散射结果也表明了NBT-KBT单晶的拉曼振动模式具有四方相结构特征.利用扫描电镜(SEM)和透射电镜(TEM)研究了单晶的表面形貌和微结构特征.另外,单晶介电常数随温度以及频率的变化关系显示单晶具有弛豫铁电体特性.  相似文献   

12.
以钛酸四丁酯Ti(OC4H9)4和五水硝酸铋Bi(NO3)3·5H2O为原料,NaOH为矿化剂,通过水热法制备钛酸铋钠(Na0.5Bi0.5TiO3)粉体.通过X射线衍射仪(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)对反应制备的粉体进行物相分析.结果表明,反应温度、反应时间及矿化剂浓度均是影响钛酸铋钠粉体制备的关键因素.利用JMA方程对其进行动力学计算分析,结果表明,在反应温度为120~ 180℃时,NBT颗粒的Avrami指数n随温度的升高而减小,而反应速率k则相反,反应活化能Ea为50.14 kJ·mol-1.  相似文献   

13.
Single crystals of Bi1.5Sb0.5Te3 doped with Ag atoms (cAg = 0 - 4.34x1019 atoms/cm3) were characterized by measurement of Hall coefficient, electrical conductivity, Seebeck coefficient and the figure of merit. It was found that Ag atoms in the crystal structure of Bi1.5Sb0.5Te3 behave like donors. It is necessary to add more than one Ag atom to the Bi1.5Sb0.5Te3 compound in order to suppress the hole concentration by one hole. Such a behaviour of the dopant is explained by the formation of various structural defects. Besides the dominant interstitial defects of Ag* silver atoms form also positively charged substitutional defects Ag″, Ag′, and a four-layer-lamellae of the type [Ag0.5Sb0.5]-Te-[Ag0.5Sb0.5]-Te. The incorporation of Ag atoms into the Bi1.5Sb0.5Te3 lattice, besides the suppression of the hole concentration, leads to a decrease in the figure of merit Z.  相似文献   

14.
金属有机分解法制备无铅K0.5Bi0.5TiO3铁电薄膜   总被引:2,自引:0,他引:2  
采用金属有机分解法(MOD)在p型Si(111)衬底上制备了K0.5Bi0.5TiO3(KBT)薄膜.用X射线衍射技术研究了薄膜的结构和结晶性.同时还研究了薄膜的绝缘性和存储性能.结果发现在740°C下退火4min的KBT薄膜呈钙钛矿结构;在0~8V范围内,薄膜的漏电流小于1.5×10-9A;在-12~+8V的偏压范围内,C-V记忆窗口宽度为10V.  相似文献   

15.
采用MOSD+Dipping方法在P型Si(111)衬底上制备了0.87Na0.5Bi0.5TiO3-0.13PbTiO3薄膜.用X射线衍射技术研究了薄膜的结构和结晶性.用原子力显微镜分析了薄膜的表面形貌.同时还研究了薄膜的存储性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号