首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
β-HMX晶体结构及其性质的高水平计算研究   总被引:14,自引:1,他引:14  
对β-HMX晶体进行DFT-B3LYP/6-31G计算研究,求得其能带结构和电子结构,探讨了结构-性能关系。从带隙约为5.7eV推知HMX晶体为绝缘体,计算所得晶格间相互作用能为149.29kJ.mol^-^1;计算的升华热(154.08kJ.mol^-^1)与实验值相符。晶体中相邻分子的硝基氧之间点电荷静电势要高,表明该处晶格易于断裂、并可能成为冲击引爆中心。从原子间距和原子间重叠布居分析,发现β-HMX分子之间存在微弱的氢键;环外以硝胺键较强,环内以N-C键较弱,预示该二部位易于引发分解和起爆。  相似文献   

2.
3-硝基-1,2,4-三唑-5-酮的锰钴和镍配合物的分子轨道研究   总被引:2,自引:0,他引:2  
用EHMO方法计算研究3-硝基-1,2,4-三唑-5-酮(NTO)的锰、钴和镍配合物[M(H2O)6](NTO)2·2H2O(M=Mn、Co和Ni)的电子结构,通过比较原子上净电荷、原子间重叠布居、前沿分子轨道能级和组成等电子结构参数,阐明了标题物的配位键特征和热解实验.  相似文献   

3.
酚氧桥联铜钴异双核配合物的密度泛函研究   总被引:1,自引:0,他引:1  
用密度泛函方法,在ROB3LYP/SDD//ROB3LYP/LanL2MB水平上,对酚氧桥联CuⅡ-CoⅡ异双核配合物CuCo(TS)(H2O),进行了理论计算.优化得到了它的单、三重态的平衡几何构型,计算了它们的谐振动频率.结果表明,该配合物分子的三重态比单重态稳定;电子自旋布居高度集中在Co(6)及其周围的配体原子上,而Cu(1)则没有发现电子自旋布居; 体系中存在较强的自旋离域效应.体系的前线分子轨道主要由Co(6)的d轨道和配体原子的p轨道组成,这有利于配体原子与Co(6)之间的电子转移.计算结果与实验符合得很好.  相似文献   

4.
基于密度泛函理论,采用广义梯度近似(GGA)分析了H2分子吸附在氧化硅团簇上的几何结构、电子性质以及吸附能.结果发现:H2分子与Si3O4团簇相互作用时,H2分子被分解,游离的H原子优先吸附在末端Si原子上,表明Si3O4团簇体系对氢气的存储主要依赖于末端存在悬挂键的Si原子,接着H2分子才以分子的形式以较小吸附能吸附在Si3O4H4团簇上.氢气分子主要引起与其邻近的原子电荷的重新分布.该团簇体系的红外、拉曼光谱图有效地鉴定了H2分子的吸附状态,为理论上确定团簇的稳定结构和实验上对观测结果的分析提供有力的途径.  相似文献   

5.
利用密度泛函理论B3LYP方法, 在6-311+G(3df,2p)水平上对C6H5—H…X型分子间氢键进行了几何构型优化、氢键相互作用能、电子密度分布等计算. 其中C6H6为质子供体, HCOH、H2O、NH3、CH2NH和HCN为质子受体. 从电荷布居分析、自然键轨道等角度详细地讨论了C6H5—H…X 体系中, 共轭π键、O和N的不同键型结构对氢键形成的影响以及孤电子对与C—H 反键轨道之间的相互作用(n→σ*)等.  相似文献   

6.
基于密度泛函理论的第一性原理从头计算方法,建立了Cl2和O2在TiC(100)表面的共吸附模型.通过分析吸附能、电荷密度和偏态密度(PDOS)等参数,研究了Cl2和O2在TiC(100)表面的反应机理,发现解离后的Cl原子和O原子与TiC(100)表面的原子均成键,从而破坏了Ti—C键.Cl2分子在吸附过程中充当电子的受体,得到与之成键的Ti原子贡献的电子,O2分子在吸附过程中也充当电子的受体,得到C原子贡献的电子.TiC(100)表面在吸附分子后,Ti—C成键轨道上电子占据数变少,反键轨道上电子占据数增多,Ti原子与C原子之间的成键作用减弱.同时,Ti3d与Cl3s,Cl3p发生轨道重叠杂化作用,O2p轨道和C2p轨道存在较强的共振峰,Cl原子和O原子与TiC表面相互作用强烈.  相似文献   

7.
秦笃捷  江元生 《化学学报》1987,45(2):113-119
对完全型硼烷BnHn^2^-(n=4-12)及其全卤代分子BnCln^2^-作了EH系列的计算.通过能级比较,讨论了卤代硼烷以中性价态稳定存在的原因;根据HOMO-LUMO差,排列了稳定性次序,并由重叠布居计算值,对比了B-B键长数据的变化趋势,估计了未知产物的各类B-B键长.  相似文献   

8.
应用HF、 MP2和杂化的B3LYP方法,使用3-21G基组,对H8Si8O12 和H8Si7TiO12团簇的几何构型、总能进行了计算,并在B3LYP/3-21G的水平上对硅原子的核磁共振化学位移进行了研究,得到的几何构型,以及核磁共振化学位移与实验结果进行了比较,发现吻合得很好。计算了H8Si8O12和H8Si7TiO12团簇的Mulliken布居数的大小。并对Si原子被Ti原子取代前后的H8Si8O12体系的几何构型、 Mulliken布居数的变化进行了比较和研究。  相似文献   

9.
李闯  周惦武  彭平  万隆 《化学学报》2012,70(1):71-77
采用基于密度泛函理论的第一原理方法,计算了LiBH4-X(X=O,F和Cl)体系的晶体与电子结构及解氢性能.生成热和H原子解离能的计算结果表明:O原子掺杂优先占据LiBH4间隙位,F置换氢原子位,而Cl则取代BH4单元;O,F和Cl掺杂的LiBH4体系结构稳定性发生变化,其中O提高体系解氢效果明显,而F和Cl掺杂受H原子区域环境的影响.态密度、Mulliken电子占据数和电子密度的分析结果表明:B—H之间较强的共价键是LiBH4结构稳定、解氢困难的电子结构根源,O,F和Cl对LiBH4解氢能力影响主要是掺杂改变了H的s态与B的sp态的杂化特性、以及BH4单元与Li的成键作用.  相似文献   

10.
用量子化学DV-Xα方法计算氢氧化镍Ni7O12H122+、Ni6ZnO12H122+、Ni6CuO12H122+、Ni6CaO12H122+原子簇的电子结构. 通过对态密度、电荷集居数、净电荷、电荷密度差、电离能和跃迁能的分析表明, 在氢氧化镍中加入Zn、Cu能增强Ni原子与氧原子的相互作用, 强化Ni—O键, 提高了氢氧化镍结构的稳定性, 有利于延长其循环寿命; 而Ca的添加会减弱镍原子和氧原子间的相互作用. 添加Zn、Cu、Ca都能降低氢氧化镍的电离能, 提高跃迁能, 促进电子在体系中的传递, 有利于改善氢氧化镍电极的电化学性能. 但是, 过量的钙可能引起氢氧化镍的结构改变而使其失去电化学活性.  相似文献   

11.
He  Zhi-Wei  Zhou  Su-Qin  Ju  Xue-Hai  Liu  Zu-Liang 《Structural chemistry》2010,21(3):651-656
Density functional theory calculations were performed on crystalline 2,6-diamino-3,5-dinitropyridine-1-oxide (ANPyO). The conduct bands are generally quite flat, while the valence bands are uneven. The carbon, oxygen and amino nitrogen atoms make up the narrow lower energy levels. While the carbon, amino nitrogen and atoms in nitro group make up the higher energy levels. Change of electronic charges for the decrease of the cell edge a and c are almost the same, but different from the decrease of the cell edge b, indicating an anisotropic effect related to compressions. The C-Nitro and the N–O (N-oxide) bonds are the weakest, and tend to rupture upon external stimulation. The Mulliken population for the N–O (N-oxide) bond in crystal is much smaller than that in molecule, indicating that the molecular packing weakens this bond. Judged by the fact of N–O (N-oxide) bond being weaker than C-Nitro bond, ANPyO is sensitive to mechanic impact than 1,3,5-triamino-2,4,6-trinitrobenzene, which is in good agreement with experiment. The crystal lattice energy is predicted to be −166.03 kJ/mol, after being corrected for basis set superposition error.  相似文献   

12.
Density Functional Theory (DFT) calculations at the B3LYP/6‐21G* level were performed on crystalline benzotrifuroxan (BTF). The frontier bands are generally quite flat. The energy gap between the highest occupied crystal orbital (HOCO) and the lowest unoccupied crystal orbital (LUCO) is 3.89 eV, indicating that the crystal is an electrical insulator. All the atoms of BTF make up both the lower and the higher energy bands. The projection of density of state (DOS) indicates that there exists no region with much higher reactivity as other explosives, since the coplanar rings of BTF are conjugated. An anisotropic impact on the bulk makes the electron transfer from carbon atoms to nitrogen and oxygen atoms, which lowers the strength of the C–C bond. The crystal lattice energy is predicted to be –47.39 kJ/mol. The elastic constants C11, C22, and C33 are predicted to be 191.48 GPa, 94.39 GPa, and 347.42 GPa, respectively. The large differences of C11, C22, and C33 indicate the anisotropic properties of BTF upon impacting. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

13.
Density-functional method with different basis sets was applied to the study of the highly efficient and low sensitive explosive 3-nitro-1,2,4-triazole-5-one (NTO) in both gaseous dimer and its bulk state. The binding energies have been corrected for the basis set superposition errors. Six stable dimers (II-VII) were located. The corrected binding energy of the most stable dimer VII is predicted to be -53.66 kJ/mol at the B3LYP/6-311++G(**) level. It was found that the structures of the more stable dimers (V-VII) are through the hydrogen bonding interaction between the carbonyl oxygen and the azole hydrogen of 3-nitro-1,2,4-triazole-5-one. The changes of Gibbs free energies (DeltaG) in the processes from the monomer to the dimers at 298.15 K are 8.51, 0.90, 0.35, -8.74, -10.67, and -11.06 kJ/mol for dimers from II to VII, respectively. Dimers V-VII, possessing cyclic structures, can be spontaneously produced from the isolated monomer at room temperature. The lattice energy is -156.14 kJ/mol, and this value becomes to -150.43 kJ/mol when a 50% correction of the basis set superposition error was adopted. The frontier bands are quite flat. Judged from the value of band gap of 4.0 eV, it may be predicted that 3-nitro-1,2,4-triazole-5-one is an insulator. Most atoms in NTO, with the exception of C(5) atom and the nitro atoms, make up the upper valence bands. In contrast, the lower conduction bands mainly consist of the nitro N and O atoms. The population of the C-NO(2) bond is much less than those of the other bonds and the detonation may be initiated by the breakdown of this bond.  相似文献   

14.
Density function theory calculations were performed at the GGA/PW91, GGA/PBE, and LDA/CA‐PZ levels to study the structures and properties of the crystalline TNAD (trans‐1,4,5,8‐tetranitrotetraazadecalin). The relaxed crystal structure compares well with the experimental data. Analysis on the band structures shows that the frontier energy bands are generally quite flat, and the energy gap between the highest occupied crystal orbital and the lowest unoccupied crystal orbital is about 3.4 eV, indicating that the crystal is an electrical insulator. All the atoms of TNAD make up both the lower and the higher energy bands. The projection of density of state demonstrates that the N? NO2 bond is the most reactive region of the material. The lattice energy is predicted to be ?155.13 kJ/mol at the LDA/CA‐PZ level, consistent with the previous studies, whereas it is underestimated by the GGA/PW91 (?70.41 kJ/mol) and GGA/PBE (?74.33 kJ/mol). The optical properties under ambient condition were investigated, including dielectric function, absorption coefficient, and reflectivity. The calculated absorption spectra show a number of absorption peaks in the fundamental absorption region, which are believed to be associated with different exciton states. And the reflectivity spectra are mainly composed of four peak structures, where the magnitude changes in the order of GGA/PBE < GGA/PW91 < LDA/CA‐PZ on the whole. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

15.
35Cl NQR frequency and spin lattice relaxation time in 3,4-dichloronitrobenzene have been measured as a function of temperature and pressure. Two NQR signals were observed in the temperature range 77 to 300 K and pressure up to 5.1 kbar at 300 K. The contributions to the relaxation from the torsional motion of the molecule and reorientational motion of the nitro group have been analyzed on the basis of the Woessner and Gutowsky model. The temperature dependence of the average torsional lifetimes of the molecules, transition probabilities, and the activation energy for the reorientation of the nitro group was estimated. The pressure dependence of the NQR frequency in 3,4-Dichloronitrobenzene shows a nonlinear increase in NQR frequency with increase in pressure, indicating increased contribution from the static effects at higher pressures. A thermodynamic analysis of the data was carried out to determine the constant-volume temperature coefficients of the NQR frequency. The spin–lattice relaxation was found to be weakly dependent on pressure.  相似文献   

16.
A new hetero-bimetallic coordination polymer, cesium, and sodium complex of styphnate trihydrate [CsNa(TNR)(H2O)3] n (TNR: 2,4,6-trinitroresorcinol dianion, the dianion of styphnic acid) was synthesized. The title complex was characterized by X-ray single crystal diffraction, element analysis, FT-IR, DSC, TG-DTG studies. In the title polymer molecule, the cesium cation is coordinated by 13 oxygen atoms: three originated from the water molecule and the others are from the nitro group and the phenolic hydroxyl group of TNR; the sodium cation is surrounded by six oxygen atoms from water molecules and TNR forming a distorted octahedron. The coordination polymer crystal was formed by the bridging ligands of water molecules and TNR connected with different cesium and sodium cations.  相似文献   

17.
In this paper, we deal with the scope and mechanism of the strong Br?nsted acid-catalyzed intramolecular cyclization reaction of methyl 3-aryl-2-nitropropionates to give 4H-1,2-benzoxazines. This reaction can be regarded as an oxygen functionalization of the aromatic ring wherein the oxygen atom is derived from the nitro group in the molecule, and it is favored by the presence of electron-withdrawing groups on the benzene ring. The reaction rate is strongly influenced by the acidity of the reaction medium, and the methyl ester group on the alpha-carbon atom with respect to the nitro group facilitates deprotonation at the alpha-position to give aci-nitro species in situ. Some correlation was found between the electron-withdrawing ability of the substituents on benzene, represented in terms of Hammett's sigma p value of the substituents, and the rate of disappearance of the starting substrate leading to the product in trifluoromethanesulfonic acid (TFSA)/trifluoroacetic acid (TFA) medium. This would be because the acidity of the alpha-proton with respect to the nitro group is influenced by the substituents on the benzene ring. Experimentally, we excluded the 6pi electrocyclization mechanism involving deprotonation of the benzyl proton of the protonated aci-nitro species. Alternative cyclization mechanisms involving equilibrating monocationic aci-nitro species bearing O-protonated ester carbonyl group and O-protonated aci-nitro species were calculated to be highly energetically unfavorable. Diprotonated or protosolvative species can reduce the activation energy significantly, and this is consistent with the observed acidity-dependent nature of the cyclization.  相似文献   

18.
The thermal decomposition kinetics of 1-bromo-4-nitroxymethylcubane in the liquid phase is typical of C-ONO2 bond heterolysis, which occurs if the nitro ester has a strong donor substituent. A comparison between 1-bromo-4-nitroxymethylcubane and tert-butyl nitrate shows that bromocubyl is close to the tert-butyl group in induction properties and cubyl itself is a stronger donor than this group.  相似文献   

19.
The banding and electronic structures of crystalline 1,1,3,3,5,5‐hexaazidocyclotriphosphazene (P3N21) have been investigated at DFT‐B3LYP/6‐31G(d) level. Relaxed crystal structure compares well with experimental data. The energy gap is 5.57 eV, indicating that P3N21 is an insulator. The frontier orbital is mainly formed by atomic orbitals of azido group, so it is the most reactive part of the molecule. The intermolecular interaction is strong along the direction that is nearly perpendicular to the phosphazene ring. The distribution of electrostatic potential is quite uneven, so P3N21 has a very high impact sensitivity. The point charge electrostatic potential is very high between the azido groups of the neighboring molecules, which indicates that the crystal lattice in this position may easily be broken and becomes the explosion center when P3N21 is impacted. The overlap populations of P–Nα bonds are much less than those of other bonds, therefore the P–Nα bonds first rupture by external stimuli, which agrees well with the experimental study of mass spectrum.  相似文献   

20.
Condensation of brominated ethyl acetoacetate with thiourea gives 2‐amino‐5‐ethoxycarbonyl‐4‐methylthiazole ( 1 ) and ethyl α‐(2‐amino‐4‐thiazolyl)acetate ( 2 ), indicating that bromination of the substrate occurs on both sides of the carbonyl group. X‐ray diffraction studies indicate weak hydrogen bonds of the amino groups, which are not observed in the IR spectra. The 1 molecule adopts planar S,O‐anti conformation in the crystal lattice, whereas the methylene group, insulating thiazole ring and the ester group in 2 molecule, makes it more flexible and makes the ester group nearly perpendicular to the thiazole ring. The small deviations of the bond lengths and angles indicate mesomeric interaction between complementary substituents across the thiazole ring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号