首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Gas‐phase affinity studies based on cations and anions commonly present in ionic liquid structures, give quantitative information about the magnitude of the interactions holding the two species together when ILs are formed. They also provide clues on how these interactions depend on the nature of the cationic and anionic moieties. In the present work, mass spectrometric experiments, performed using electrospray ionization quadrupole ion‐trap and Fourier transform ion cyclotron resonance mass spectrometry, were used to obtain two affinity scales by Cooks’ kinetic method: one scale for the various cations for the bis(trifluoromethylsulfonyl)imide anion, [NTf2]?, and another for the different anions for the 1‐butyl‐3‐methylimidazolium cation, [C4mim]+. The obtained results are compared with previously reported data and discussed in terms of the structural characteristics of the different cationic and anionic species.  相似文献   

2.
Electrochemical stability and noncovalent interactions escorting the cyclic ammonium-based ionic liquids composed of N-alkyl-substituted N-methyl pyrrolidinium (Pyr1R) (R = methyl, ethyl, propyl, butyl, pentyl, hexyl) cations and four anions hexafluorophosphate (PF6), tetrafluoroborate (BF4), bis(trifluoromethylsulfonyl-imide (TFSI), and trifluoromethane sulfonate (TFO) have been analyzed using the density functional theory. Electronic structures, electrochemical window, frontier orbital energy difference (HOMO-LUMO gap), binding energies, vibrational spectra of these ion pairs were characterized. It has been established that ion pair formation is largely reigned by C H⋯F interactions between anionic fluorine for BF4 and PF6 anions and C H⋯O interactions between anionic oxygen for TFSI and TFO anions and pyrrolidinic proton, methyl, or alkyl group protons of the cations. The effect of alkyl chain length and pairing anions of the alkyl substituted N-methyl pyrrolidinium-based ionic liquids on the electrochemical window was investigated. The results revealed that the HOMO energy of pairing anions is the key factor to decide the electrochemical window. Further quantification of noncovalent interactions in terms of electrostatic and hydrogen bonding interactions has been brought out employing a novel method with the aid of Mulliken and Merz-Singh-Kollman charges, prevailed in pyrrolidinium-based ionic liquids.  相似文献   

3.
Measurements of different types on various (trace) electrolytes in HClO4–Na(Li)ClO4 solutions at several (constant) values of the ionic strength have been used to determine the variation of their activity coefficients with changing amount of perchloric acid in the solution. These variations (with respect to the hydrogen ion) differ considerably among different cations and anions. The results for the alkali metal ions and the anions are interpreted in the light of the recent work of Pitzer on short-range ionic interactions. The results for the cations with outerd-electrons and the alkaline earth metal ions are interpreted in terms of ion-solvent interactions. It is concluded that the use of HClO4–NaClO4 solutions of high ionic strength (rather than the use of HClO4–LiClO4 solutions) is advisable in studies where the variation in activity coefficients must be accounted for. Finally, it is shown that the usual interpretation of the influence of the salt medium in studies of complex equilibria and reaction kinetics is sometimes questionable.  相似文献   

4.
A multiscale coarse-graining model for ionic liquids has been extended to investigate the unique aggregation of cations in ionic liquids through computer simulation. It has been found that, with sufficiently long side chains, the tail groups of cations aggregate to form spatially heterogeneous domains, while headgroups of the cations and the anions distribute as uniformly as possible. This is understood as the result of competition between the charged electrostatic interactions between headgroups and anions and the collective short-range interactions between the neutral tail groups. This aggregation can help to explain a number of experimentally observed physical phenomena in ionic liquids.  相似文献   

5.
The structures and conformational properties of 1-alkyl-3-methylimidazolium halide ionic liquids have been studied with a Becke's 3 Parameter functional method. The interaction mechanisms between the cation and the anion in 1-ethyl-3-methylimidazolium (Emim+) halide and 1-butyl-3-methylimidazolium (Bmim+) halide ionic liquids were investigated using 6-31G*, 6-31++G**, and 6-311++G** basis sets. Forty structures of different ion pairs were optimized and geometrical parameters of them have been discussed in details. Halide ions (Cl- or Br-) have been gradually placed in different regions around imidazolium cation and the interaction energies between the anion and the cation have been calculated. Theoretical results indicate that there are four activity regions in the vicinity of the imidazolium cations, in these regions the imidazolium cations and the halide anions formed stable ion pairs. Imidazolium cations can form hydrogen bond interactions with one, two or three but no more than three nearest halide anions. The halide ions are situated in hydrogen bond positions rather than at random.  相似文献   

6.
Dissolution of lignocellulose in ionic liquids is a promising route to synthesizing fuels and chemical feedstocks from woody plant materials. While cellulose dissolution is well-understood, less is known about the differences between ionic liquids' interactions with cellulose vs. lignin. This work uses dispersion-corrected density functional theory (DFT-D) to model the interactions of imidazolium chloride ionic liquid anions and cations with (1,4)-dimethoxy-β-D-glucopyranose and 1-(4-methoxyphenyl)-2-methoxyethanol as models for cellulose and the lignin polyphenol, respectively. The cellulose model preferentially interacts with Cl(-), confirming previous experimental and theoretical studies. However, the lignin model has significant π-stacking and hydrogen bonding interactions with imidazolium cation. These results are robust to changes in the computational details, and suggest that the ionic liquid cations play important roles in tuning the relative solubilities of lignin and cellulose. Calculations predict that the extended π-systems of benzimidazolium ionic liquids yield stronger interactions with lignin, showing potential for improved lignocellulose solvents.  相似文献   

7.
Potential applications of ionic liquids depend on the properties of this class of liquid material. To a large extent the structure and properties of these Coulomb systems are determined by the intermolecular interactions among anions and cations. In particular the subtle balance between Coulomb forces, hydrogen bonds and dispersion forces is of great importance for the understanding of ionic liquids. The purpose of the present paper is to answer three questions: Do hydrogen bonds exist in these Coulomb fluids? To what extent do hydrogen bonds contribute to the overall interaction between anions and cations? And finally, are hydrogen bonds important for the physical properties of ionic liquids? All these questions are addressed by using a suitable combination of experimental and theoretical methods including newly synthesized imidazolium-based ionic liquids, far infrared spectroscopy, terahertz spectroscopy, DFT calculations, differential scanning calorimetry (DSC), viscometry and quartz-crystal-microbalance measurements. The key statement is that although ionic liquids consist solely of anions and cations and Coulomb forces are the dominating interaction, local and directional interaction such as hydrogen bonding has significant influence on the structure and properties of ionic liquids. This is demonstrated for the case of melting points, viscosities and enthalpies of vaporization. As a consequence, a variety of important properties can be tuned towards a larger working temperature range, finally expanding the range of potential applications.  相似文献   

8.
We use the Flory-Huggins theory to demonstrate conditions of extra solvent power of ionic liquids. The short-range interactions between anions, cations, and molecules of the solute are taken into account. We find that solvent power of the ionic liquids is enhanced if non-Coulomb interactions between the anions and cations are repulsive. The mechanism responsible for the extra solvent power is related to the "shielding" of the anion-cation interactions by the molecules of the solute.  相似文献   

9.
The mixture of ionic liquid (1-butyl-3-methylimidazolium tetrafluoroborate, bmimBF4) and water (2.5%, molar fraction) under isothermal conditions at 80 degrees C was investigated by FTIR spectroscopy and two-dimensional correlation infrared spectroscopy (2D-IR) methods. Three regions were focused: the OH stretching band of water (3755-3300 cm (-1)), the stretching band of CH on the imidazole ring (3300-3020 cm (-1)), and the BF stretching band of anions (1310-1260 cm (-1)). During this process, water was gradually evaporated as time passed, which produced influences on the interactions among cations, anions, and water molecules. In the FTIR analysis, we found an interesting "V"-shaped changing trend in peak areas of the C-H on the imidazole ring and the B-F stretching band; the inflection of the system was 913 s, gained through the "moving window" method. A two-step variation was accordingly found during this process. Hydrogen bonds formed by water molecules with cations or water molecules with anions were destroyed by the reduction of water, making a fall in the former period of "V" process, while electrostatic interactions newly formed between anions and cations leading to a rise during the latter period of this course. In this paper, various conformations formed among cations, anions, and water molecules were clearly assigned, and we managed to trace the whole dynamic mechanism of this isothermal process by 2D-IR techniques.  相似文献   

10.
翟翠萍  刘学军  王键吉 《化学进展》2009,21(5):1040-1051
室温离子液体作为一种绿色溶剂和功能材料,越来越引起人们的重视,其研究手段也越来越多。本文着重概述了核磁共振方法在测定离子液体的结构、纯度及性质,研究离子液体阴阳离子间的相互作用、离子液体与其他化合物的相互作用、离子液体及其在混合体系中的动力学特征、离子液体在溶液中的聚集行为,以及测定离子液体的热力学参数中的应用。  相似文献   

11.
Modelling room temperature ionic liquids   总被引:2,自引:0,他引:2  
Room temperature ionic liquids (IL) composed of organic cations and inorganic anions are already being utilized for wide-ranging applications in chemistry. Complementary to experiments, computational modelling has provided reliable details into the nature of their interactions. The intra- and intermolecular structures, dynamic and transport behaviour and morphologies of these novel liquids have also been explored using simulations. The current status of molecular modelling studies is presented along with the prognosis for future work in this area.  相似文献   

12.
Paramagnetic surface active ionic liquids (PMSAILs) classify task-specific ionic liquids with magnetic properties by incorporating metal into the cationic or anionic part of the ionic liquid. Paramagnetic ionic liquids had long-chain either in cations or anions and showed excellent surface activity and magnetic properties without any need for the magnetic nanoparticles. These PMSAILs have inherent unique ionic liquid properties and self-assembled into various nano-aggregates such as micelles, vesicles, rod-like micelles, and etc., by modification in the structure of cations or anions. PMSAILs provide stimuli-responsive properties, which is one of the essential aspects of targeted applications. The appropriate functional tunability of anions and cations in PMSAILs leads to various multifaceted chemical and biological applications. A new emerging trend in PMSAIL research is hybridization with flexible materials. This review will mainly deal with the synthesis, characterization, and brief history of PMSAILs and their potential advantages in the various applications in micellar catalysis, purification and separation of biomolecules, compaction and decompaction of DNA, drug delivery, and other biomedical applications.  相似文献   

13.
Extensive atomistic simulations demonstrated that a gradual substitution of hexyl chains with phenyl groups in tetraalkylphosphonium cations results in remarkable changes in hydrogen bonding interactions, liquid structures and scattering structural functions, and rotational dynamics of hexyl chains and phenyl groups in tetraalkylphosphonium bis(trifluoromethylsulfonyl)imide ionic liquids. Hydrogen donor sites in hexyl chains present competitive characteristics with those in phenyl groups in coordinating anions, as well as their continuous and intermittent hydrogen bonding dynamics. Cation-cation and anion-anion spatial correlations show concomitant shift to short distances with decreased peak intensities with variations of cation structures, whereas cation-anion correlations have a distinct shift to large radial distances due to decreased associations of anions with neighboring cations. These microstructural changes are qualitatively manifested in shifts of prominent peaks for prevalent charge alternations and adjacency correlations between ion species in scattering structural functions. Meanwhile, rotational dynamics of hexyl chains speed up, which, in turn, slow down rotations of phenyl groups, whereas anions exhibit imperceptible changes in their rotational dynamics. These computational results are intrinsically correlated with conformational flexibilities, molecular sizes, and steric hindrance effects of phenyl groups in comparison with hexyl chains, and constrained distributions of anions around cations in heterogeneous ionic environments.  相似文献   

14.
Starting with polycationic ammonium and phosphonium salts bearing halide anions previously synthesized in our laboratory, we have prepared a new category of nonaqueous ionic liquids. These new nonaqueous ionic liquids bear either free phosphate anions or partially esterified phosphate anions as the counterions to the ammonium or phosphonium cations. We generally refer to these new species as LIPs (liquid ionic phosphates). We have developed three approaches toward the syntheses of these materials from the halide salts: one using hexafluorophosphoric acid;; a classical ion exchange method; and treatment with the free phosphorus-containing acid under vacuum. The new LIPs, although highly viscous, exhibit significantly high specific conductivities. Unlike ionic liquids bearing tetrafluoroborate of tetrachloroaluminate anions, the LIPs are unreactive toward water. Further, the LIPs bearing simple phosphate anions are soluble in water, unlike their corresponding hexafluorophosphate salts. We have also examined the UV/Vis, fluorescence, and mobility characteristics of the new LIPs.  相似文献   

15.
Several hydrophobic ionic liquids (ILs) based on long-chain aliphatic ammonium- and phosphonium cations and selected aromatic anions were analyzed by reversed-phase high-performance liquid chromatography (RP-HPLC) employing trifluoroacetic acid as ion-pairing additive to the acetonitrile-containing mobile phase and adopting a step-gradient elution mode. The coupling of charged aerosol detection (CAD) for the non-chromophoric aliphatic cations with diode array detection (DAD) for the aromatic anions allowed their simultaneous analysis in a set of new ILs derived from either tricaprylmethylammonium chloride (Aliquat 336) and trihexyltetradecylphosphonium chloride as precursors. Aliquat 336 is a mix of ammonium cations with distinct aliphatic chain lengths. In the course of the studies it turned out that CAD generates an identical detection response for all the distinct aliphatic cations. Due to lack of single component standards of the individual Aliquat 336 cation species, a unified calibration function was established for the quantitative analysis of the quaternary ammonium cations of the ILs. The developed method was validated according to ICH guidelines, which confirmed the validity of the unified calibration. The application of the method revealed molar ratios of cation to anion close to 1 indicating a quantitative exchange of the chloride ions of the precursors by the various aromatic anions in the course of the synthesis of new ILs. Anomalies of CAD observed for the detection of some aromatic anions (thiosalicylate and benzoate) are discussed.  相似文献   

16.
Molecular dynamics simulations of ionic liquids [1-alkyl-3-methylimidazolium (alkyl = ethyl, butyl and hexyl), N-butylpyridinium, N-butyl-N,N,N-trimethylammonium and N-butyl-N-methylpyrrolidinium cations combined with the (CF(3)SO(2))(2)N(-) (TFSA) anion] show that the conformational flexibility of the alkyl chains in the cations is one of the important factors determining the diffusion of ions. Artificial constraint imposed on the internal rotation of alkyl chains significantly decreases the self-diffusion coefficients of cations and anions. The internal rotation of the C-N bond connecting the alkyl chain and the aromatic ring has large effects on the diffusion of ions in imidazolium and pyridinium based ionic liquids. The calculated self-diffusion coefficients of cations and anions decrease 20-40% by imposing the torsional constraint of the C-N bond. On the other hand the torsional constraint of the C-N bond does not largely change the diffusion of ions in the quaternary alkyl ammonium based ionic liquids. The conformational flexibility of the terminal C-C-C-C bond of the alkyl chains has large effects on the diffusion of ions in the quaternary alkyl ammonium based ionic liquids. The influence of the electrostatic interactions and the high density of ionic liquids on the diffusion of ions were studied. The electrostatic interactions have the paramount importance on the slow diffusion of ions in ionic liquids, while the high density of ionic liquids is also responsible for the slow diffusion. The electrostatic interactions and the high density of ionic liquids enhance the effects of the torsional constraint on the diffusion of ions, which suggests that the charge-ordering structure and small free volume originated in the strong electrostatic interactions are the causes of the significant effects of the conformational flexibility on the diffusion of ions in ionic liquids.  相似文献   

17.
Ionic clathrate hydrates are known to be formed by the enclathration of hydrophobic cations or anions into confined cages and the incorporation of counterions into the water framework. As the ionic clathrate hydrates are considered for their potential applicability in various fields, including those that involve solid electrolytes, gas separation, and gas storage, numerous studies of the ionic clathrate hydrates have been reported. This review concentrates on the physicochemical properties of the ionic clathrate hydrates and the notable characteristics of these materials regarding their potential application are addressed.  相似文献   

18.
A series of ionic liquids (ILs) based on nitrile-functionalized imidazolium, pyridinium, and quaternary ammonium as cations and chlorides and tetrafluoroborate, hexafluorophosphate, dicyanamide, and bis(trifluoromethanesulfonyl)imide as anions have been prepared and characterized. The physicochemical properties such as spectroscopic, thermal, solubility, surface, electrochemical, tribological, and toxic properties were comparatively studied. The results showed that the incorporation of a CN group to cations could result in remarkable changes in these properties. The reason resulting in such remarkable differences in the properties may be attributed to the conformational changes in the imidazolium groups caused by the interaction between the CN group with other neighboring cations or anions and the enhancement in hydrogen-bonding interactions due to the incorporation of a CN group.  相似文献   

19.
The nature of the interactions between 1,3-dialkylimidazolium cations and noncoordinating anions such as tetrafluoroborate, hexafluorophosphate, and tetraphenylborate has been studied in the solid state by X-ray diffraction analysis and in solution by (1)H NMR spectroscopy, conductivity, and microcalorimetry. In the solid state, these compounds show an extended network of hydrogen-bonded cations and anions in which one cation is surrounded by at least three anions and one anion is surrounded by at least three imidazolium cations. In the pure form, imidazolium salts are better described as polymeric supramolecules of the type {[(DAI)(3)(X)](2+)[(DAI)(X)(3)](2-)}(n) (where DAI is the dialkylimidazolium cation and X is the anion) formed through hydrogen bonds of the imidazolium cation with the anion. In solution, this supramolecular structural organization is maintained to a great extent, at least in solvents of low dielectric constant, indicating that mixtures of imidazolium ionic liquids with other molecules can be considered as nanostructured materials. This model is very useful for the rationalization of the majority of the unusual behavior of the ionic liquids.  相似文献   

20.
The structures, infrared spectra, and electronic properties of the N7,N9-dimethylguaninium chloride have been studied. The interaction of one cation with one to four Cl anions and one Cl anion with two cations were investigated. Fifteen stable conformers are obtained. It is found that there are four acidic regions in the vicinity of the guaninium cations. In these regions, the cation could H-bond with one to three Cl anions but no more than three nearest anions. One Cl anion could H-bond with two cations. Additionally, evidence of a Cl...pi interaction between the anion and cation is observed. Among these structures, one cation interaction with two anions and two cations interaction with one anion have the larger interaction energies than the other series. Natural bond orbital analyses and molecular orbitals reveal that the charge transfer from anion(s) to the cation(s) occurs mainly through either the Cllp --> sigma C-H, Cllp --> sigma N-H, or Cllp --> pi C8-N7 interactions. The interaction between Cl and sigma (C/N-H) or pi C-N produces a small bond order. This indicates that the Cl...H (Cl...pi) interaction exhibits a weak covalent character and suggests a strong ionic H-bond (Cl...pi bond). What's more, formation of Cl...H/Cl...pi bond decreases the bond order of the associated C/N-H bond or C8-N7 bond. In addition, examination of vibrational spectrum of each conformer explains the origin of H-bonding character.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号