首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Ferroelectric (Ba0.6Sr0.4)TiO3 (BST) thin films have been deposited by pulsed laser deposition onto single-crystal Y3Fe5O12 (YIG) substrates with/without a MgO buffer layer. The structure and microwave properties of the BST films have been investigated as a function of substrate orientation and O2 deposition pressures (50-800 mTorr). The crystallographic orientation of BST film varies with the deposition conditions. The dielectric properties of the ferroelectric were measured using interdigitated capacitors deposited on top of the BST film. BST films exhibit high tunability (20-40%) and high dielectric Q=1/cos' (30-50) with a dc bias field of 67 kV/cm at 10 GHz. A coplanar waveguide transmission line was fabricated from a (001)-oriented BST film on (111)YIG which exhibited a 17° differential phase shift with an applied dc bias field of 21 kV/cm (10 GHz). An equivalent differential phase shift was achieved with a magnetic field of 160 Gauss.  相似文献   

2.
In order to study the effect of different buffer layers on the Pb(Zr0.52Ti0.48)O3 (PZT) thin films, 10-nm thick (Pb0.72La0.28)Ti0.93O3 (PLT) and Pb(Zr0.52Ti0.48)O3 buffer layers have been deposited on the Pt(1 1 1)/Ti/SiO2/Si substrates by pulsed laser deposition, respectively. The top buffer layers were also deposited on PZT thin films with the same thickness of the seed layers in order to enhance the fatigue characteristics of PZT thin films. We compared the results of dielectric constant, hysteresis loops and fatigue resistance characteristics. It was found that the dielectric properties of PZT thin films with PLT buffer layers were improved by comparing with PZT thin films with PZT buffer layers. The polarization characteristics of PZT thin films with PLT buffer layers were observed to be superior to those of PZT thin films using PZT buffer layers. The remanent polarization of PZT thin films showed 36.3 μC/cm2 and 2.6 μC/cm2 each in the case of use PLT and PZT buffer layers. For the switching polarization endurance analysis, PZT thin films with PLT buffer layers showed more excellent result than that of PZT thin films with PZT buffer layers.  相似文献   

3.
Oriented crystalline Pb(ZrxTi1-x)O3 (x=0.53) (PZT) thin films were deposited on metallized glass substrates by pulsed laser deposition (1060-nm wavelength Nd:YAG laser light, 10-ns pulse duration, 10-Hz repetition rate, 0.35-J/pulse and 25-J/cm2 laser fluence), from a commercial target at substrate temperatures in the range 380-400 °C. Thin films of 1-3 7m were grown on Au(111)/ Pt/NiCr/glass substrates with a rate of about 1 Å/pulse on an area of 1 cm2. The deposited PZT films with perovskite structure were oriented along the (111) direction, as was revealed from X-ray diffraction spectra. Fourier transform infrared spectroscopy (FTIR) was performed on different PZT films so that their vibrational modes could be determined. Piezoelectric d33 coefficients up to 30 pC/N were obtained on as-deposited films. Ferroelectric hysteresis loops at 100 Hz revealed a remanent polarization of 20 7C/cm2 and a coercive field of 100 kV/cm.  相似文献   

4.
Thin Y2O3 films have been grown on (100) Si using an in-situ ultraviolet-assisted pulsed laser deposition (UVPLD) technique. When compared to conventional pulsed laser deposited (PLD) films under similar conditions, the UVPLD-grown films exhibited better structural and optical properties, especially those grown at lower substrate temperatures, from 200 °C to 400 °C. X-ray diffraction investigations showed that the films grown were highly crystalline and textured. According to X-ray photoelectron spectroscopy and Rutherford backscattering spectrometry investigations, UVPLD-grown Y2O3 films have a better overall stoichiometry and contain less physisorbed oxygen than the conventional PLD-grown films. The refractive index values, measured in the range 300-750 nm by using variable-angle spectroscopic ellipsometry, were similar to those of a reference Y2O3 film.  相似文献   

5.
New ferroelectric Pb(Zr,Ti)O3-Pb(Mn,W,Sb,Nb)O3 (PZT-PMWSN) thin film has been deposited on a Pt/Ti/SiO2/Si substrate by pulsed laser deposition. Buffer layer was adopted between film and substrate to improve the ferroelectric properties of PZT-PMWSN films. Effect of a Pb(Zr0.52Ti0.48)O3 (PZT) and (Pb0.72La0.28)Ti0.93O3 (PLT) buffer layers on the stabilization of perovskite phase and the suppression of pyrochlore phase has been examined. Role of buffer layers was investigated depending on different types of buffer layer and thickness. The PZT-PMWSN thin films with buffer layer have higher remnant polarization and switching polarization values by suppressing pyrochlore phase formation. The remnant polarization, saturation polarization, coercive field and relative dielectric constant of 10-nm-thick PLT buffered PZT-PMWSN thin film with no pyrochlore phase were observed to be about 18.523 μC/cm2, 47.538 μC/cm2, 63.901 kV/cm and 854, respectively.  相似文献   

6.
CoFe2O4 (CFO) thin film with highly (111)-preferential orientation was first deposited on the silicon substrate by a pulsed-laser deposition, and then Pb(Zr0.52Ti0.48)O3 (PZT) layers were deposited with different oxygen pressures to form the bilayer CFO/PZT nanocomposite thin films. X-ray diffraction showed that the PZT preferential orientation was strongly dependant on the oxygen pressure. The smooth film surface was obtained after depositing the CFO and PZT layers. The bilayer thin films exhibit good ferromagnetic and ferroelectric properties, and a low leakage current density of 0.004 μA/cm2 at 50 kV/cm. The leakage current density curves show loops for the electric polarized field when the electric field reverses. PACS 77.84.Lf; 75.80+q; 81.05.Zx; 81.15.Fg  相似文献   

7.
The CoFe2O4 and Co0.8Fe2.2O4 single layer (CFO) as well as PZT/CoFe2O4 and PZT/Co0.8Fe2.2O4 bilayer thin films were grown using the pulsed laser deposition technique on Pt(111)/Si substrates at 600 °C. All films had a perfect (111)-orientation and the degree of orientation of CFO films was improved by the deposition of a PZT top layer. Precision X-ray diffraction analysis (avoiding the shift of peaks due to sample misalignment) revealed that the CFO films on Pt(111)/Si substrate were under an out-of-plane contraction and the deposition of a PZT top layer led to the increase in the out-of-plane contraction. The (111)-oriented CFO single layer films had a strong in-plane magnetic anisotropy as a result of orientation as well as the stress-induced magnetic anisotropy. The magnetic properties of CFO film were altered by the deposition of a PZT top layer leading to the enhancement of in-plane magnetic anisotropy. The enhanced in-plane magnetic anisotropy was more detectable in PZT/Co0.8Fe2.2O4 rather than PZT/CoFe2O4 bilayer film, which could be expected from its higher magnetocrystalline as well as magnetostriction constants.  相似文献   

8.
ZnO thin films have been grown on thin Si3N4 membranes and (001) sapphire substrates by an ultraviolet-assisted pulsed laser deposition (UVPLD) technique. The microstructure of the films grown on Si3N4 membranes, investigated by transmission electron microscopy, showed that crystalline and textured films can be grown by UVPLD at a substrate temperature of only 100 °C. For deposition temperatures higher than 400 °C, ZnO films grown on sapphire substrates were found to be epitaxial by Rutherford backscattering (RBS) and X-ray diffraction measurements. The minimum yield of channeling RBS spectra recorded from films deposited at 550 °C was around 2% and the FWHM of the rocking curve for the (002) diffraction peak was 0.17°; these values are similar to those recorded from ZnO layers grown by conventional PLD at 750 °C.  相似文献   

9.
Pure titanium dioxide (TiO2) thin films were deposited on single-crystal Si(100) substrates by laser ablation. We investigated the effects of ambient gas (O2 or Ar), pressures, and substrate temperatures on film quality. From the annealing experiment of the deposited TiO2 thin film under Ar or O2 ambient gas, we see the chemical effect of ambient gas on film quality. The crystallinity of the deposited TiO2 thin film is best at 700 °C in the substrate temperature range attempted, 400-700 °C, and at pressures of 0.1 Torr and below. The rutile phase is dominant under most experimental conditions. Only under very extreme conditions did we obtain a thin film of the anatase phase.  相似文献   

10.
We report thin tantalum pentoxide (Ta2O5) films grown on quartz and silicon substrates by the pulsed laser deposition (PLD) technique employing a Nd:YAG laser (wavelength 5=532 nm) in various O2 gas environments. The effect of oxygen pressure, substrate temperature, and annealing under UV irradiation using a 172-nm excimer lamp on the properties of the grown films has been studied. The optical properties determined by UV spectrophotometry were also found to be a sensitive function of oxygen pressure in the chamber. At an O2 pressure of 0.2 mbar and deposition temperatures between 400 and 500 °C, the refractive index of the films was around 2.18 which is very close to the bulk Ta2O5 value of 2.2, and an optical transmittance around 90% in the visible region of the spectrum was obtained. X-ray diffraction measurements showed that the as-deposited films were amorphous at temperatures below 500 °C and possessed an orthorhombic (#-Ta2O5) crystal structure at temperatures above 600 °C. The most significant result of the present study was that oxygen pressure could be used to control the composition and modulate optical band gap of the films. It was also found that UV annealing can significantly improve the optical and electrical properties of the films deposited at low oxygen pressures (<0.1 mbar).  相似文献   

11.
Films of La0.5Sr0.5CoO3 (LSCO) have been deposited on specially treated TiO2-terminated (001) SrTiO3 substrate surfaces and on macroporous polycrystalline !-Al2O3 substrates, having a mean pore diameter of 80 nm, by pulsed laser deposition. The films deposited on SrTiO3 are good conducting, (001) textured, and exceptionally smooth (1-2 Å for 100 nm thick films). LSCO films deposited on porous !-Al2O3 are polycrystalline and exhibit good crystallographic and electrical properties despite the large substrate roughness and the differences in lattice parameters and crystal structure between the film and the substrate. Different growth modes have been observed on the porous !-Al2O3 substrates depending on the oxygen pressure during film deposition. Films grown at an oxygen pressure of 10-1 mbar are macroporous, whereas films grown at 10-2 mbar completely cover the substrate pores. In the latter case, strain effects lead to film cracking.  相似文献   

12.
The relationship between the structure and the microwave dielectric properties of epitaxial Ba0.5Sr0.5TiO3 (BST) films has been investigated. Single-phase BST films (40-160 nm) have been deposited onto (100) MgO substrates by pulsed laser deposition. As-deposited films show a significant tetragonal distortion. The in-plane lattice parameters (a) are always larger than the surface normal lattice parameters (c). The tetragonal distortion depends on the thickness of the films and the post-deposition annealing conditions. Films annealed at 900 °C show less tetragonal distortion than the as-deposited film and the films annealed at higher temperatures. The distortion in the film is due to stress caused by the lattice mismatch and thermal expansion coefficient differences between the film and the substrate. The dielectric constant and its change with dc bias voltage of BST films on MgO at microwave frequencies increase with increasing annealing temperature from 900 °C to 1200 °C, which corresponds to an increase in the tetragonal distortion.  相似文献   

13.
The effect of oxygen pressure during pulsed laser deposition of Pb(Zr0.52Ti0.48)O3 (PZT) thin films on CoFe2O4 nano-seed layered Pt(111)/Si substrate was investigated. The PZT film deposited at oxygen pressure lower than 25 mTorr is identified as both perovskite and pyrochlore phases and the films deposited at high oxygen pressure (50-100 mTorr) show the single-phase perovskite PZT that has a perfect (111)-orientation. In addition, the film deposited at PO2 of 50 mTorr has a uniform surface morphology, whereas the film deposited at PO2 of 100 mTorr has a non-uniform surface morphology and more incompacted columnar cross-section microstructure. The polarization of film deposited at 100 mTorr is higher than that deposited at 50 mTorr, but shift of the hysteresis loop along the electrical field axis in the film deposited at PO2 of 100 mTorr is larger than that of the film deposited at PO2 of 50 mTorr.  相似文献   

14.
We investigated the structural properties of LaNiO3 thin films of three different thicknesses deposited by pulsed laser deposition on Si(001) mainly by using a synchrotron X-ray scattering measurement. The LaNiO3 thin films were grown with the (00l) preferred growth direction, showing completely random distribution in the in-plane direction. In the early stage of the growth, the film was almost unstrained. However, as the film grew further, tensile strain was markedly involved. Also its surface became rougher but its crystalline quality improved significantly with increasing film thickness. A completely (00l)-oriented (Pb0.4Zr0.6)TiO3 thin film was successfully grown on such a LaNiO3/Si(001) substrate at a substrate temperature of 350 °C by using the same pulsed laser deposition. Our results show that the LaNiO3 film can serve effectively as a bottom electrode layer for the preparation of a well-oriented (Pb0.4Zr0.6)TiO3 thin film on Si substrates.  相似文献   

15.
MgO ultrathin films were grown on Si(1 0 0) substrates as buffer layers for the growth of ferroelectric BaTiO3 thin films by laser molecular beam epitaxy (L-MBE). The deposition process of MgO buffer layers grown on silicon was in situ monitored by reflection high-energy electron diffraction (RHEED). The structure of BaTiO3 films fabricated on MgO buffers was investigated by X-ray diffraction. Biaxially textured MgO was obtained at high laser energy density, but when the laser energy was lowered, MgO buffer was transformed to the form of texture with angular dispersion with the increase of the film thickness. BaTiO3 films grown on the former buffer were completely (0 0 1) textured, while those on the latter were (0 0 1) preferred orientated. Furthermore, the fabricated MgO buffers and BaTiO3 films had atomically smooth surface and interface. All these can reveal that the quality of textured MgO buffer is a key factor for the growth of BaTiO3 films on silicon.  相似文献   

16.
As potential gate dielectric materials, pseudobinary oxide (TiO2)x(Al2O3)1-x (0.1≤x≤0.6) films (TAO) were deposited on Si (100) substrates by pulsed-laser deposition method and studied systematically via various measurements. By a special deposition process, including two separate steps, the TAO films were deposited in the form of two layers. The first layer was deposited at room temperature and the second layer was completed at the substrate temperature of 400 °C. Detailed data show that the properties of the TAO films are closely related to the ratio between TiO2 and Al2O3. The existence of the first layer deposited at room temperature can effectively restrain the formation of the interfacial layer. And according to the results of X-ray photoelectron spectroscopy and high-resolution transmission electron microscopy performed on the films, no other information belonging to the silicon oxide could be observed. For the (TiO2)0.4(Al2O3)0.6 film, the best result has been achieved among all samples and its dielectric constant is evaluated to be about 38. It is valuable for the amorphous TAO film as one of the promising dielectric materials for high-k gate dielectric applications. PACS 77.55.+f; 73.40.Qv; 81.15.Fg  相似文献   

17.
Nitrogen-doped ZnO (ZnO:N) films are prepared by thermal oxidation of sputtered Zn3N2 layers on A1203 substrates. The correlation between the structural and optical properties of ZnO:N films and annealing temperatures is investigated. X-ray diffraction result demonstrates that the as-sputtered Zn3N2 films are transformed into ZnO:N films after annealing above 600℃. X-ray photoelectron spectroscopy reveals that nitrogen has two chemical states in the ZnO:N films: the No acceptor and the double donor (N2)o. Due to the No acceptor, the hole concentration in the film annealed at 700℃ is predicted to be highest, which is also confirmed by Hall effect measurement. In addition, the temperature dependent photoluminescence spectra allow to calculate the nitrogen acceptor binding energy.  相似文献   

18.
Ti:sapphire films were grown using molten Al-Ti alloy ablation targets with either O2 gas pulses or O2 background reactive medium on sapphire (0001) substrates. The films were characterized by the use of XRD, RHEED, AFM, and XPS. While the films deposited at a substrate temperature of 650 °C showed three-dimensional epitaxial growth, the films deposited at 1000 °C exhibited a two-dimensional structure. Annealing of the low-temperature deposited films improved the crystal quality but failed to improve the surface morphology. Ti exists in the host sapphire lattice in the form of Ti3+ for films deposited at lower temperatures, whereas it assumes the tetravalent form in the high-temperature deposited films. The valence states of Ti identified by XPS studies are in agreement with low-temperature luminescence results.  相似文献   

19.
Indium tin oxide (ITO) thin films (200-400 nm in thickness) have been grown by pulsed laser deposition (PLD) on glass substrates without a post-deposition anneal. The electrical and optical properties of these films have been investigated as a function of substrate temperature and oxygen partial pressure during deposition. Films were deposited at substrate temperatures ranging from room temperature to 300 °C in O2 partial pressures ranging from 0.1 to 100 mTorr. For 300 nm thick ITO films grown at room temperature in oxygen pressure of 10 mTorr, the electrical conductivity was 2.6᎒-3 Q-1cm-1 and the average optical transmittance was 83% in the visible range (400-700 nm). For 300 nm thick ITO films deposited at 300 °C in 10 mTorr of oxygen, the conductivity was 5.2᎒-3 Q-1cm-1 and the average transmittance in the visible range was 87%. Atomic force microscopy (AFM) measurements showed that the RMS surface roughness for the ITO films grown at room temperature was ~7 Å, which is the lowest reported value for the ITO films grown by any film growth technique at room temperature.  相似文献   

20.
Stefan F?rster  Wolf Widdra 《Surface science》2010,604(23-24):2163-2169
The growth of epitaxial ultrathin BaTiO3 films upon rf magnetron sputter deposition on a Pt(111) substrate has been studied by scanning tunnelling microscopy, low-energy electron diffraction, and X-ray photoelectron spectroscopy. The BaTiO3 films have been characterized from the initial stages of growth up to a film thickness of 4 unit cells. The deposited films develop a long-range order upon annealing at 1050 K in UHV. In the submonolayer regime a wetting layer is formed on Pt(111). Thicker films reveal a Stranski–Krastanov-like structure as observed with STM. By XPS a good agreement of the thin film stoichiometry with BaTiO3 single crystal data is determined. Due to annealing at 1150 K BaTiO3 forms large two-dimensional islands on the Pt(111) substrate. Different surface structures develop on the islands depending on the O2 partial pressure during annealing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号