首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 927 毫秒
1.
采用溶胶-凝胶法以Fe3O4为磁核制备了磁功能性光催化剂,以甲基橙为模拟污染物,考察了掺杂Fe比例、催化剂煅烧温度以及煅烧时间对催化剂活性的影响.催化剂的最佳制备条件为:Fe3O4掺杂Fe含量为5%,煅烧温度为450 ℃,煅烧时间为2 h.通过TG-DTA、XRD、UV-Vis、TEM对催化剂进行了表征,结果表明:制备的催化剂具有明显的核壳结构,原Fe3O4磁核经过高温煅烧被氧化;TiO2包覆在磁核表面;催化剂的吸收带边发生红移,在可见光区的吸收强度有所增强;催化剂颗粒的平均粒径为20 nm.  相似文献   

2.
利用对氨基苯磺酸氟硼酸重氮盐与Fe3O4磁性纳米粒子(MNPs)的偶联反应,非常方便地制备出表面含有磺酸基的Fe3O4磁性纳米粒子。 透射电子显微镜(TEM) 测试结果表明,粒子的平均粒径在 20 nm左右。 溶解性实验表明,该纳米粒子具有较好的水溶性,但不溶于常用的有机溶剂,因此可利用其磁性回收并循环使用。 将该纳米粒子用于催化羧酸与醇的酯化反应,产物酯的收率为71%~86%。 催化剂在酯化反应中的最优使用量为1.5%(质量分数)。 同时,该催化剂可催化果糖合成5-羟甲基糠醛(HMF),收率为32%。  相似文献   

3.
首先采用热分解法制备了Fe3O4纳米材料, 再将其作为磁性核, 分别采用种子沉积法和种子介导生长法制备了Fe3O4-Au核-卫星纳米复合材料和Fe3O4@Au核-壳纳米复合材料, 并对其形貌和性能进行了表征分析. 结果表明, 所制备的Fe3O4-Au核-卫星和Fe3O4@Au核-壳纳米复合材料粒径均匀, Au纳米颗粒均匀沉积/包覆在Fe3O4纳米材料表面, 且样品均具有良好的磁响应性. 使用4-氨基苯硫酚(4-ATP)作为拉曼探针分子, 对比了这两种纳米复合材料作为SERS基底时的拉曼信号增强效果. 结果显示, Fe3O4@Au核-壳纳米复合材料是更优秀的SERS基底, 且该SERS基底具有良好的信号再现性. 最后, 使用Fe3O4@Au核-壳纳米复合材料作为SERS基底, 成功地在苹果皮上检测出残留福美双的SERS信号.  相似文献   

4.
制备对醇氧化反应具有优异电活性的钯催化剂是醇燃料电池研究的重要内容。本文用硼氢化钠还原法制备了钯纳米颗粒, 然后沉积在Fe3O4/C复合物表面, 得到了不同Fe3O4负载量的Pd/Fe3O4-C催化剂. 透射电镜(TEM)图显示钯纳米颗粒均匀地分散在Fe3O4/C表面. 对制备好的Pd/Fe3O4-C催化剂进行了循环伏安法(CV)、计时电流(CA)和电化学阻抗谱(EIS)的测试, 研究了其在碱性介质中对C1-C3醇类(甲醇、乙醇和丙醇)氧化的电催化活性. 结果表明, 所制备的不同Fe3O4负载量的Pd/Fe3O4(2%)-C,Pd/Fe3O4(5%)-C, Pd/Fe3O4(10%)-C和Pd/C催化剂中, Pd/Fe3O4(5%)-C催化剂表现出最高的醇氧化电流密度. 依据循环伏安(CV)数据,Pd/Fe3O4(5%)-C催化剂对甲醇、乙醇、正丙醇和异丙醇氧化的阳极峰电流密度分别是Pd/C催化剂的1.7、1.4、1.7和1.3倍. Pd/Fe3O4(5%)-C催化剂对乙醇氧化的电荷传递电阻也远低于Pd/C催化剂. 制备的所有催化剂对C1-C3醇类电氧化的电流密度大小排序如下: 正丙醇﹥乙醇﹥甲醇﹥异丙醇. 此外, 碳粉中Fe3O4纳米颗粒的存在提高了钯纳米颗粒的电化学稳定性.  相似文献   

5.
基于溶剂热合成体系,制备了不同形貌的Fe3O4微球和纳米片催化剂,考察了水热合成条件对Fe3O4晶粒形貌的影响,并研究了Fe3O4纳米催化剂的费托合成(F-T)性能。结果表明,成核和晶体生长速率是控制Fe3O4晶体形貌的关键。与传统的沉淀铁催化剂相比,Fe3O4纳米催化剂更容易还原和向活性相转变,因此,具有更高的F-T反应活性、低碳烯烃选择性及C5+选择性;Fe3O4微球催化剂比纳米片催化剂更易维晶粒的稳定,具有更高的反应活性和稳定性。  相似文献   

6.
采用优化的Stöber法制备了平均粒径为230 nm的单分散球形SiO2颗粒,并以此为内核,通过水解沉积法制备了不同壳层厚度的核-壳结构SiO2@Fe2O3催化剂。采用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、N2物理吸附和X射线衍射分析(XRD)等手段对催化剂进行表征,探讨了不同制备条件对SiO2@Fe2O3催化剂形貌的影响。结果表明,通过水解沉积法制备的SiO2@Fe2O3催化剂具有明显的核-壳结构,并且保持了原始SiO2核的球形形貌,Fe2O3纳米粒子通过-OH的氢键作用连接在SiO2表面,形成了2~10 nm厚的Fe2O3均匀连续包覆层。  相似文献   

7.
Janus纳米粒子的结构设计和简易合成是Pickering乳液界面催化的关键. 本文通过在Pickering乳液保护法中操纵共轭亚油酸的自组装、 自交联性和弱还原性, 合成了Janus型自交联吸附胶束修饰的纳米Fe3O4 (SCA-Fe3O4), 并在其表面原位还原金后, 合成了Janus型催化剂Au-SCA-Fe3O4, 考察其同时作为乳化剂和催化剂在乳液界面催化苯甲醇氧化生成苯甲醛的性能. 结果表明, 该Janus纳米粒子的金修饰量(质量分数)仅为0.66%, 兼具乳化性、 催化性和磁响应性. Au-SCA-Fe3O4可制备外观稳定(100 μm)和热稳定(90 ℃)的苯甲醇/水型Pickering乳液, 可显著提高互不相溶反应物与催化剂间的接触面积, 使其催化活性达到均匀纳米催化剂的2倍和非乳液催化时的3倍, 其在界面的不可转动性使苯甲醛的选择性高于99.9%, 避免了苯甲醛被过度氧化成苯甲酸.  相似文献   

8.
采用溶剂热法和溶胶-凝胶法制备了顺磁性Fe3O4@SiO2颗粒,以Pickering乳液界面保护法实现颗粒表面分区获得Fe3O4@SiO2 Janus颗粒,进一步选区复合生长Pt或Ag纳米颗粒制备Fe3O4@SiO2-Pt和Fe3O4@SiO2-Ag Janus颗粒.Fe3O4@SiO2-Pt Janus颗粒的Pt一侧进行催化过氧化氢的反应,具有自驱动功能.因其顺磁性和两亲性,Fe3O4@SiO2-Ag Janus颗粒能够作为磁响应颗粒乳化剂稳定油水乳液,并将Ag的催化功能引入界面.  相似文献   

9.
Fe3O4纳米粒子因其独特的磁学性能和良好的生物相容性,在生物医药、催化剂、环境治理等领域具有良好的应用前景。然而,磁性Fe3O4纳米粒子易团聚、在潮湿的空气中易氧化,制约了Fe3O4纳米粒子的深度应用。本文结合课题组在磁性Fe3O4纳米粒子应用方面的研究成果,综述了磁性Fe3O4纳米粒子的功能化修饰,并讨论了磁性Fe3O4复合纳米材料发展面临的机遇和挑战。   相似文献   

10.
陈汝芬  宋珊珊  魏雨 《化学学报》2011,69(14):1654-1660
采用氧化共沉淀相转化法, 控制适当的pH(9~11.5)和反应温度(20~100 ℃), 制备了不同粒径(20.6~45.0 nm)的纳米Fe3O4, 同时对纳米Fe3O4一维成链的影响因素进行了分析. 研究发现: 磁场强度和溶液的pH值对纳米Fe3O4一维成链有影响, 磁场强度在低于75 mT, pH值在9~11.5时, Fe3O4呈现一维链状排列, 且成链趋势随pH值的减小而增强. 纳米Fe3O4粒子的链状结构是由外部磁场和其表面电荷的协同效应影响的. 纳米Fe3O4均呈现出铁磁性行为, 一维链状纳米Fe3O4具有相对较大的矫顽力和剩磁.  相似文献   

11.
A novel, magnetically recoverable carbonaceous solid acid Fe3O4@C-SO3H catalyst for the conversion of carbohydrates to 5-ethoxymethylfurfural (EMF) was developed. The effect of the DMSO fraction in the ethanol-DMSO binary solvent on the distribution of the reaction products was investigated. The catalyst showed an excellent activity in the synthesis of EMF from fructose and 5-hydroxymethylfurfural (HMF). 5- Ethoxymethylfurfural was also obtained with a high yield of 64.2% in an ethanol–DMSO solvent system via one-step conversion of fructose. After reaction, the catalyst could be recovered by exposure of the reaction mixture to external magnetic field and reused several times without a loss of catalytic activity.  相似文献   

12.
Catalytic hydrolysis of cellulose over solid acid catalysts is one of efficient pathways for the conversion of biomass into fuels and chemicals. High catalytic activity and easy separation from reaction media are two important factors for evaluating the performance of the solid acid catalysts for the cellulose hydrolysis. In this study, we report a core–shell Fe3O4@C-SO3H nanoparticle with a magnetic Fe3O4 core encapsulated in a sulfonated carbon shell, as recyclable catalyst for the hydrolysis of cellulose. The sulfonated carbon shell shows a good activity, presenting 48.6 % cellulose conversion with 52.1 % glucose selectivity under the moderate conditions of 140 °C after 12 h reaction. Importantly, the magnetic Fe3O4 core makes the catalysts easily separated from reaction mixtures by using the externally applied magnetic field. In addition, the Fe3O4@C-SO3H nanoparticle catalyst shows a high stability in the activity and magnetization during recycling tests, suggesting it a promising solid acid catalyst for the hydrolysis of cellulose.  相似文献   

13.
Millimeter size γ‐Al2O3 beads were prepared by alginate assisted sol–gel method and grafting organic groups with propyl sulfonic acid and alkyl groups as functionalized γ‐Al2O3 bead catalysts for fructose dehydration to 5‐hydroxymethylfurfural (5‐HMF). Experiment results showed that the porous structure of γ‐Al2O3 beads was favorable to the loading and dispersion of active components, and had an obvious effect on the properties of the catalyst. The lower calcination temperature of γ‐Al2O3 beads increased the specific surface area, the hydrophobicity and the activity of catalysts. Competition between the reaction of alkyl groups and ‐SH groups with surface hydroxyl during the preparation process of the catalyst influenced greatly the acid site densities, hydrophobic properties and activity of the catalyst. With an increase in the alkyl group chain, the hydrophobicity of catalysts increased obviously and the activity of the catalyst was enhanced. The most hydrophobic catalyst C16‐SO3H‐γ‐Al2O3–650°C exhibited the highest yield of 5‐HMF (84%) under the following reaction conditions: reaction medium of dimethylsulfoxide/H2O (V/V, 4:1), catalyst amount of 30 mg, temperature of 110°C and reaction time of 4 hr.  相似文献   

14.
A novel super acidic magnetic nanoparticle as catalyst was successfully synthesized. The preparation of this dendrimer sulfonic acid functionalized γ‐Fe2O3 magnetic core‐shell silica nanoparticles as a new recoverable and heterogeneous nanocatalyst was described. The new catalyst was characterized using various techniques such as scanning electron microscopy (SEM), energy dispersive spectrum (EDS), and thermo gravimetric synthesis (TGA). Moreover, we have examined the catalytic activity of the catalyst for one‐pot, efficient and facile synthesis of 2‐hydroxy‐1,4‐naphthoquinone derivatives via a three‐component condensation reaction of 2‐hydroxynaphthalene‐1,4‐dione, aromatic aldehydes and aniline derivatives. High yields of products, short reaction times, waste‐free, mild, ambient and solvent‐free reaction conditions are advantages of this protocol. Also, the catalyst can be easily recovered by an external magnetic and reused several times without significant loss of its catalytic activity.  相似文献   

15.
A novel magnetically separable mesoporous silica‐supported palladium catalyst was designed and prepared for the selective hydrogenation of naphthalene to tetralin, which is an important transformation from a practical viewpoint. In the catalyst, Pd nano grains were dispersed uniformly and protected within the mesoporous silica shells being coated on the Fe3O4 core, so that the durability of the catalyst could be significantly improved.  相似文献   

16.
A core–shell Fe3O4@silica magnetic nanocomposite functionalized with 3-amino-5-mercapto-1,2,4-triazole (Fe3O4/SiO2/PTS/AMTA) was prepared using Fe3O4 with silica layer, and its surface was modified with 3-amino-5-mercapto-1,2,4-triazole. The novel synthesized magnetite nanocomposite was characterized using various techniques. The catalytic activity of Fe3O4/SiO2/PTS/AMTA was demonstrated in the synthesis of bis(indolyl)methane derivatives under solvent-free conditions. Some of the bis(indolyl)methane derivatives were synthesized through one-pot, three-component reaction of 1 mol of various benzaldehydes or ketones with 2 mol of indole in the presence of Fe3O4/SiO2/PTS/AMTA in good to excellent isolated yields. In addition, the catalyst could be recovered and used for several reaction runs without loss of catalytic activity. The stability of recycled catalyst was investigated. This method has some advantages including experimental simplicity, good to excellent yields, solvent-free conditions and stability and reusability of the catalyst.  相似文献   

17.
An effective one‐pot, convenient process for the synthesis of 1‐ and 5‐substituted 1H‐tetrazoles from nitriles and amines is described using1,4‐dihydroxyanthraquinone–copper(II) supported on Fe3O4@SiO2 magnetic porous nanospheres as a novel recyclable catalyst. The application of this catalyst allows the synthesis of a variety of tetrazoles in good to excellent yields. The preparation of the magnetic nanocatalyst with core–shell structure is presented by using nano‐Fe3O4 as the core, tetraethoxysilane as the silica source and poly(vinyl alcohol) as the surfactant, and then Fe3O4@SiO2 was coated with 1,4‐dihydroxyanthraquinone–copper(II) nanoparticles. The new catalyst was characterized using Fourier transform infrared spectroscopy, X‐ray diffraction, transmission electron microscopy, field emission scanning electron microscopy, dynamic light scattering, thermogravimetric analysis, vibration sample magnetometry, X‐ray photoelectron spectroscopy, nitrogen adsorption–desorption isotherm analysis and inductively coupled plasma analysis. This new procedure offers several advantages such as short reaction times, excellent yields, operational simplicity, practicability and applicability to various substrates and absence of any tedious workup or purification. In addition, the excellent catalytic performance, thermal stability and separation of the catalyst make it a good heterogeneous system and a useful alternative to other heterogeneous catalysts. Also, the catalyst could be magnetically separated and reused six times without significant loss of catalytic activity. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
Iron oxide (Fe3O4) magnetic nanoparticles as movable cores were used to synthesize yolk–shell nanoparticles with pH‐responsive shell composed of ethylene glycol dimethacrylate (EGDMA)‐crosslinked poly(acrylic acid) (PAA) via two different routes. In the first more common route, Fe3O4 nanoparticles were coated with silica layer via the Stöber process to yield Fe3O4@SiO2 core–shell nanoparticles, subsequently used as seeds in the distillation precipitation copolymerization of AA and EGDMA to yield Fe3O4@SiO2@P(AA‐EGDMA). The silica layer was selectively removed through alkali etching to yield Fe3O4@air@P(AA‐EGDMA). In the second route, Fe3O4 nanoparticles without any stabilization were used as seeds in the distillation precipitation copolymerization of AA and EGDMA to yield Fe3O4@P(AA‐EGDMA) core–shell nanoparticles. The nanoparticles were subsequently dispersed in acidic medium of pH = 2. Yolk–shell Fe3O4@air@P(AA‐EGDMA) nanoparticles were formed through deswelling of crosslinked PAA because of protonation of carboxyl groups at low pH values. Various techniques were utilized to investigate the characteristics of the synthesized core–shell nanoparticles. Formation of yolk–shell nanostructure was observed for both synthesis routes, namely etching of silica layer and deswelling approaches, from vibrating sample magnetometry and transmission electron microscopy results. Both types of nanoparticles showed pH‐responsive behaviour, i.e. decrease in absorption with increase in pH, as examined using UV–visible spectroscopy.  相似文献   

19.
We report the synthesis of magnetically separable Fe3O4@Silica‐Threonine‐Pd0 magnetic nanoparticles with a core–shell structure. After synthesis of Fe3O4@Silica, threonine as an efficient stabilizer/ligand was bonded to the surface of Fe3O4@Silica. Then, palladium nanoparticles were generated on the threonine‐modified catalyst. The threonine stabilizer helps to generate palladium nanoparticles of small size (less than 4 nm) with high dispersity and uniformity. Magnetically separable Fe3O4@Silica‐Threonine‐Pd0 nanocatalyst was fully characterized using various techniques. This nanocatalyst efficiently catalysed the Heck cross‐coupling reaction of a variety of substrates in water medium as a green, safe and inexpensive solvent at 80°C. The Fe3O4@Silica‐Threonine‐Pd0 catalyst was used for at least eight successful consecutive runs with palladium leaching of only 0.05%.  相似文献   

20.
A facile strategy is reported for the fabrication of Pt‐loaded core–shell nanocomposite ellipsoids (Fe2O3‐Pt@DSL) consisting of ellipsoidal Fe2O3 cores, double‐layered La2O3 shells and deposited Pt nanoparticles (NPs). The formation of the doubled‐shelled structure uses Fe2O3‐Pt@mSiO2 as template sacrificial agent and it involves the re‐deposition of silica and self‐assembly of metal oxide units. The preparation methods of double‐shelled metal oxides avoid repeated coating and etching and could be utilized to fabricate other shaped double‐shelled composites. Characterization results indicated that the Fe2O3‐Pt@DSL nanocomposites possessed mesoporous structure and tunable shell thickness. Moreover, due to the formation of Fe2O3 and La2O3 composites, Pt NPs can also be stabilized via deposition on chemically active oxides with a synergistic effect. Therefore, as a catalyst for the reduction of 4‐nitrophenol, Fe2O3‐Pt@DSL showed superior catalytic activity and reusability due to structural superiority and enhanced composite synergy. Finally, well‐dispersed Pt NPs were encapsulated into the void between the shell layers to construct the Fe2O3‐Pt@DSL‐Pt catalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号