首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In the field of advanced oxidation processes(AOPs) of wastewater, many materials can be used as heterogeneous catalysts. The role of these catalysts is to activate oxidants and generate reactive oxygen species(ROS) to decompose refractory pollutants. Perovskite oxide, an emerging catalyst in the field of AOPs, has been extensively studied in wastewater treatment. Nevertheless, the application of perovskite in AOP systems still faces some problems, such as leaching of metal ions, a small surface ...  相似文献   

2.
The interactions of oxygen with pre~reduced silver catalysts as well as their catalytic propertiesfor CO selective oxidation in H2 after oxygen pre-treatment are studied in this paper. It is found that the pretreatment exerts a strong influence on the activity and selectivity of the silver catalyst. A drop in activity and selectivity is observed after treating a pre-reduced catalyst with oxygen at low temperatures,whereas a converse result is obtained after an oxidizing treatment at high temperatures (T≥350℃). O2-TPD results show that surface oxygen species adsorbs on silver surface after the oxygen treatment at low temperatures. However, penetration of oxygen into the silver is enhanced by a high temperature treatment, meanwhile the surface oxygen species disappear. No other silver species except metallic silver are observed on all the catalysts by XRD, and the size of silver particle is not changed after the treatment with oxygen at low temperatures. The surface oxygen species formed by oxygen treatment can also be removed by hydrogen reduction. The strongly-adsorbed surface oxygen species prohibit the adsorption and diffusion of oxygen species in reaction gas on the surface of silver catalyst, causing the decrease in CO oxidation activity, in other words, it is important to obtain a clean silver surface for increasing the catalyst activity in CO removal from H2-rich feed gas. The differences in activity and selectivity due to the oxygen pretreatment at different temperatures axe discussed in terms of the changes in the surface/subsurface oxygen species of the silver particles.  相似文献   

3.
The carbon nanotubes(CNTs) as the emerging materials for organic pollutant removal have gradually become a burgeoning research field.Herein,a mini-review of CNTs-based materials curre ntly studies for organic pollutant elimination is presented.This review summarizes the preparation methods of CNTsbased materials.CNTs-based materials can be used as adsorbents to remove organic pollutants in wastewater.The adsorption mechanisms mainly include surface diffusio n,pore diffusion and adsorption reaction.Most importantly,an in-depth overview of CNTs-based materials currently available in advanced oxidation processes(AOPs) applications for wastewater treatment is proposed.CNTs-based materials can catalyze different oxidants(e.g.,hydrogen peroxide(H_2 O_2),persulfates(PMS/PDS),ozone(O_3) and ferrate/permanganate(Fe(Ⅵ)/Mn(Ⅶ)) to generate more reactive oxygen species(ROS) for organic pollutant elimination.Moreover,the possible reaction mechanisms of removing organic pollutants by CNTs-based materials are summarized systematically and discussed in detail.Finally,application potential and future research directions of CNTs-based materials in the environmental remediation field are proposed.  相似文献   

4.
The oxidation of carbon monoxide is widely investigated for realistic and potential uses in energy production and environmental processes.As a probe reaction to the surface properties,it gives an insight into the relationship between the structure of active phase and catalytic performance.Noble metals alloyed with certain transition metals in the form of a nanoalloy exhibit enhanced catalytic activity for various reactions,especially when simultaneous activation of oxygen and CO is involved.This article highlights some of these insights into nanoalloy catalysts in which platinum group metal(PGM)is alloyed with a second and/or third transition metal(M/M′=Co,Fe,V,Ni,Ir,etc.),for catalytic oxidation of carbon monoxide in a gas phase.Recent studies have provided important insights into how the atomic-scale structures of the nanoalloy catalysts operate synergistically in activating oxygen and maneuvering surface oxygenated species.The exploration of atomic-scale chemical/structural ordering and coordination in correlation with the catalytic oxidation properties based on findings from ex-and in-situ synchrotron X-ray techniques is emphasized;for example,high-energy X-ray diffraction coupled to atomic-pair distribution function and X-ray absorption fine-structure spectroscopic analysis.The understanding of the detailed active sites of the nanoalloys has significant implications for the design of low-cost,active,and durable catalysts for sustainable energy production and environmental processes.  相似文献   

5.
Catalytic wet air oxidation(CWAO) was employed to reduce the organic compounds in landfill leachate and the effects of temperature, oxygen pressure, catalyst dosage, and concentration of the organic compounds on the TOC and CODcr removal rates were studied. The degradation kinetics of landfill leachate was also investigated and an exponential experiential model consisting of four influential factors was established to describe the reduction of the organic compounds in the landfill leachate. Meanwhile, the GC-MS technique was used to detect the components of the organic intermediates for the inference of the decomposition mechanisms of the organic compounds in landfill leachate. The results reveal that the reaction temperature and the catalyst dosage are the most important factors affecting the degradation reaction of the organic compounds and that the principal intermediates confirmed by GC-MS are organic acids at a percentage of more than 88% with no aldehydes or alcohols detected. The decomposition mechanisms of the organic compounds in landfill leachate were inferred based on the GC-MS information as follows;the activated gas phase O2 captured the hydrogen of the organic pollutants to produce free radicals, which then initiated the catalytic reaction. So most of the organic compounds were oxidized into CO2 and H2O ultimately. In general, catalytic wet air oxidation over catalyst Co3O4/Bi2O3 was a very promising technique for the treatment of landfill leachate.  相似文献   

6.
Nitrobenzene is an important chemical intermediate for producing dyestuffs. It is also used as a solvent. The industrial synthesis of nitrobenzene has been carried out in liquid phase with a mixture of nitric acid and concentrated sulfuric acid. This conventional nitration process still has some unsolved problems such as treatment of waste sulfuric acid and disposal of wastewater. The vapor-phase nitration of benzene to prepare nitrobenzene over the solid acidic catalysts in diluted nitric…  相似文献   

7.
In this study, Cr and Co promoted, as well as unpromoted vanadium phosphate (VPO) catalysts were synthesized by the reaction of V2O5 and o-H3PO4 in organic medium followed by calcination in n-butane/air environment at 673 K. The physico-chemical properties and the catalytic behavior were affected by the addition of Cr and Co dopants. H2-TPR was used to investigate the nature of oxidants in the unpromoted and promoted catalysts. The results showed that both the Cr and Co promoters remarkably lowered the temperature of the reduction peak associated with V5 . The amount of oxygen species originated from the active phase, V4 , removed was significantly increased for Co and Cr-promoted catalysts. Both Cr and Co dopants improve strongly the n-butane conversion without sacrificing the MA selectivity. A good correlation was observed between the amount of oxygen species removed from V4 phase and the activity for n-butane oxidation to maleic anhydride. This suggested that V4 -O was the center for the activation of n-butane.  相似文献   

8.
The electrochemical advanced oxidation processes(EAOPs) have been extensively applied in the treatment of organic pollutants degradation.Herein,the mini review provides the coupling systems about EAOPs and different oxidants(e.g.,persulfate(PS),peroxymonosulfate(PMS),and ozone(O_3)),including EAOPs-PS systems,EAOPs-PMS systems,EAOPs-peroxone systems,and photoelectro-oxidants systems,for the organic compounds degradation.The coupling system of EAOPs with oxidants is an effective way to improve the generated free radicals(e.g.,HO~·and SO_4~(·-)) concentration and to accelerate pollutant degradation.In this review,we make a summary of the homogeneous and heterogeneous EAOPs-oxidant processes.The reaction mechanisms of EAOPs combined with different oxidants are elucidated in detail,as well as the synergistic effect for improving the degradation and mineralization efficiency.  相似文献   

9.
Selective oxidation of diphenylmethane to benzophenone requires active and selective catalysts. The framework incorporation of cerium in AlPO-5 molecular sieves creates active cerium sites in isolation. These active sites are responsible for selective oxidation. Cerium incorporated AlPO-5 with different Al/Ce ratios were synthesized, and the vapor phase oxidation of diphenylmethane in air over these catalysts was studied at 250, 275, 300, 325, and 350 °C. The diphenylmethane conversion and selectivity for benzophenone were more than 90%. CeAlPO-5(25) was found to be more active than other catalysts. The stability of the catalyst was verified by the time on stream study which indicated steady diphenylmethane conversion and benzophenone selectivity. Hence framework incorporated CeAlPO-5 molecular sieves are stable and active catalysts for the selective oxidation of diphenylmethane.  相似文献   

10.
The crystal structure of perovskite-type catalysts, Ca_xLa_(1-x)MnO_(3 λ), remains unchangedwhen x varies from 0 to 1 as identified by X-ray analysis. Both non-stoichiometric amountof oxygen (denoted by λ) and Mn~(4 ) content are functions of x. ESR analysis showed thatvarying the substitution value x in A, the oxidation state of B could simultaneously be adjust-ed, this permits one to change the oxygen chemisorpting ability of these catalysts and toraise their catalytic activity. Based upon the experimental results and from the point ofview of solid defect chemistry, a theoretical analysis for the possible formation of defecttypes is made, and the assumption that the formation of the active species O_2~- or O~- isthrough the reaction of oxygen anion defect with molecular oxygen in gas phase is proposed.This idea is supported by the data obtained by XPS investigation. The reaction mechanism ofpcrovskite-type catalyst for ammonia oxidation is discussed accordingly.  相似文献   

11.
Heteropoly compounds (HPC), a kind of polyoxometallates, with their strong acidity and oxidative ability, are good homogeneous and heterogeneous catalysts in both acid-catalyzed and selective oxidation reactions, and have been widely used in petroleum and fine chemical industries. Owing to the diversity in their composition and structure, the catalytic properties of HPC can be altered in a wide range. Among them, the heteropolyanions with Keggin structure have been studied by far the most,especially on their applications in heterogeneous catalysis. However, since they are thermally unstable at high temperatures, their utilization in this field has been restricted. In the last ten years, inorganic membranes have been proved to be beneficial to heterogeneous catalytic processes for their high selectivity and good heat-conductivity. And the sol-gel method, one of the most common approaches to prepare inorganic membranes, is becoming mature. Here a sol-gel method to prepare a porous HPC membrane is reported. The catalytic performance of the membrane was tested through a model reaction, the selective oxidation of t-BuOH.  相似文献   

12.
In this paper, the ion transfer process of bromocresol purple(BCP) across the liquid/liquid interface has been described. The effects of the supporting eletrolyte in two phases and solvent on the transfer behavior of bromocresol purple have been investigated in detail and the relationship between the ion transfer and concentration of electrolytes in the organic phase is explained in terms of the dissociation of TBA~+ anti TPB~- in the organic phase. The proposed transfer mechanism for BCP has been proved to be reasonable by UV-spectroscopy of the products of the electrolysis in aqueous phase. The standard potential differences △_0~wφ~0 and standard Gibbs energies △_0~WG~0 of BCP transfer from water to some organic solvents are calculated. The dissociation constants of BCP obtained are in agreement with the literature values.  相似文献   

13.
<正>Heterogeneous catalysts are highly complex materials with respect to both their compositions and structures.The development of heterogeneous catalysts with optimized performances requires the fine-tuning of various factors,such as the composition,size and shape of the metals,and the unique properties of supports or other promoters,many of which play important but often incompletely understood roles in determining overall activity and stability of the catalysts.In the past decades,surface science has made valuable contributions to the understanding of catalysis with the  相似文献   

14.
Interest in nanocomposite materials is increased due to their great significance in both fundamental and applied research fields in the past two decades 1. Intercalation of organic species into lamellar inorganic solids provides a useful approach to design and synthesize inorganic-organic nanocomposite materials with novel functional properties compared with the parent compounds 2. The transition metal phosphorous trisulfides, MPS3 (M stands for a metal in +2 oxidation state), are lamellar c…  相似文献   

15.
The toxic organic dye contaminants in wastewater are extremely harmful to the ecosystem.Surface enhanced Raman scattering(SERS) is a technique with high sensitivity and chemical specificity which fulfills the requirements for monitoring dye contaminants in wastewater.However,as one of the common dye contaminants,methyl orange(MO) has very weak affinity to metallic surfaces and is difficult to be detected by SERS at low concentrations.Therefore,a new type of SERS substrate with Ag nanoparticle monolayer functionalized by mono-6-deoxy-6-thio-β-cyclodextrin(β-CD-SH) was prepared to efficiently capture and detect MO in wastewater with a limit of detection of 5×10-7 mol/L.The hydrophobic cavity of β-CD is responsible for the efficient trap and enrichment of MO on the Ag NPs surface,achieving a strong SERS signal of MO at low concentrations and at different pH values.This study provides new insight into designing a well-performed adsorbent for the capture and detection of organic contaminants.  相似文献   

16.
The effects of the available zoon above the catalyst bed on the performance of the catalyst were investigated. It has been suggested that propylene is an intermediate species in the reaction of propane to acrolein, and a two-step reaction scheme is proposed, the first step is oxidative dehydrogenation of propane to propylene in the gas phase then followed by the second step, the selective oxidation of propylene to acrolein on the surface of the catalyst. The performance of the catalyst depends on both the oxidative dehydrogenation of propane to propylene in the gas phase and the selective oxidation of propylene to acrolein on the catalyst surface. The thermal cracking, homogeneous oxidative dehydrogenation and heterogeneous catalytic dehydrogenation of propane as well as the selective catalytic oxidation of propane to acrolein over BiMoO based mixed oxides catalysts were studied. Under the optimum reaction conditions of propane dehydrogenation and selective oxidation of propylene, the selectivity and the yield of acrolein approached to 45mol% and 14mol%, respectively under about 30mol% propane conversion.  相似文献   

17.
The direct conversion of methane to methanol has attracted a great deal of attention for nearly a century since it was first found possible in 1902, and it is still a challenging task. This review article describes recent advancements in the direct partial oxidation of methane to methanol. The history of direct oxidation of methane and the difficulties encountered in the partial oxidation of methane to methanol are briefly summarized. Recently reported developments in gas-phase homogeneous oxidation, heterogeneous catalytic oxidation and liquid phase homogeneous catalytic oxidation of methane axe reviewed.  相似文献   

18.
On the basis that endothermic aqueous-phase reforming of oxygenated hydrocarbons for H2 produc- tion and exothermic liquid phase hydrogenation of organic compounds are carried out under extremely close conditions of temperature and pressure over the same type of catalyst, a novel liquid system of catalytic hydrogenation has been proposed, in which hydrogen produced from aqueous-phase re- forming of oxygenated hydrocarbons is in situ used for liquid phase hydrogenation of organic com- pounds. The usage of active hydrogen generated from aqueous-phase reforming of oxygenated hy- drocarbons for liquid catalytic hydrogenation of organic compounds could lead to increasing the se- lectivity to H2 in the aqueous-phase reforming due to the prompt removal of hydrogen on the active centers of the catalyst. Meanwhile, this novel liquid system of catalytic hydrogenation might be a po- tential method to improve the selectivity to the desired product in liquid phase catalytic hydrogenation of organic compounds. On the other hand, for this novel liquid system of catalytic hydrogenation, some special facilities for H2 generation, storage and transportation in traditional liquid phase hydrogenation industry process are yet not needed. Thus, it would simplify the working process of liquid phase hy- drogenation and increase the energy usage and hydrogen productivity.  相似文献   

19.
The electro-peroxone technology, a novel type of advanced oxidation technology, is widely used in wastewater treatment. Herein, this paper reviews the advantages and problems of the electro-peroxone technology compared with electrochemical oxidation technology, ozonation technology, and traditional peroxone technology. Due to the high kinetics of pollutant degradation, the electro-peroxone process can reduce the reaction time and energy consumption of pollutant treatment in wastewater. The elect...  相似文献   

20.
The increase in natural gas reserves makes methane a significant hydrocarbon feedstock. However, the direct catalytic conversion of methane into liquid fuels and useful chemicals remains a great challenge,and many studies have been devoted to this field in the past decades. Electrocatalysis is considered as an important alternative approach for the direct conversion of methane into value-added chemicals, although many other innovative methods have been developed. This review highlights recent advances in electrocatalytic conversion of methane to ethylene and methanol, two important chemicals. The electrocatalytic systems efficient for methane conversions are summarized with an emphasis on catalysts and electrolytes. The effects of reaction conditions such as the temperature and the acid–base property of the reaction medium are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号