首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
赵娣  张博  段召娟  李爱昌 《无机化学学报》2016,32(12):2158-2164
采用电化学方法制备Ag_2S/Ag_3PO_4/Ni复合薄膜,以扫描电子显微镜(SEM)、X射线衍射(XRD)、紫外-可见漫反射光谱(UVVis DRS)对薄膜的表面形貌、晶相结构、光谱特性及能带结构进行了表征,以罗丹明B为模拟污染物对薄膜的光催化活性和稳定性进行了测定,采用向溶液中加入活性物种捕获剂的方法对薄膜的光催化机理进行了探索。结果表明:最佳工艺制备的Ag_2S/Ag_3PO_4/Ni是由均匀的球形纳米颗粒构成的薄膜,其光催化活性明显优于纯Ag_3PO_4/Ni薄膜和纯Ag_2S/Ni薄膜,且在保持薄膜光催化活性基本不变的前提下可循环使用6次。提出了可见光下Ag_2S/Ag_3PO_4/Ni复合薄膜光催化降解罗丹明B的反应机理。  相似文献   

2.
质子交换膜燃料电池(PEMFC)作为一种清洁、高效的能源转化装置,已经备受学术界与产业界的关注.然而,高活性、高稳定性与低成本的铂基阴极氧还原(ORR)电催化剂的缺乏,严重限制PEMFC的大规模商业化应用.为提高贵金属铂的电催化性能,核壳纳米结构的研究受到广范关注.然而,核壳纳米结构的制备过程通常需要采用有机前驱体、表面活性剂与较高的反应温度,导致大多核壳结构制备方法的大规模应用受到限制.我们在室温下无表面活性剂与高沸点溶剂的参与下,通过钯表面吸附的解离的氢原子来还原K2PtCl4,得到Pd核@Pt壳纳米结构.通过改变加入K2PtCl4的量,可以成功控制壳的厚度;通过透射电子显微镜(TEM)观察得知,我们制备了铂壳厚度分别为0.45,0.75,0.9 nm的核壳结构.Pd核@Pt壳纳米结构的良好的纳米晶体结构与外延生长模式,通过高分辨透射电子显微镜(HRTEM)与能量色散谱仪(EDS)得到证实.同时,所制备Pd核@Pt壳样品的核壳结构通过高角环形暗场-扫描透射-元素分布(HAADF-STEM-EDX)表征方法,得到证实.X射线粉末衍射(XRD)表征证实,样品Pd核@Pt壳并无单独的Pd或Pt衍射峰出现,而是表现出良好的同种晶相结构;相对于单质Pt,样品中Pd核的存在导致Pd核@Pt壳核壳结构表现出一定程度的晶格紧缩.X射线光电子能谱(XPS)表明,钯核的存在导致铂壳的电子结合能增大,并且当铂壳厚度增大到一定程度后,核壳结构引起的电子效应维持不变.通过XPS分峰拟合可知,Pd核@Pt壳结构中零价态的铂含量均在80%以上,并且零价态的铂含量随着铂壳层厚度的增大而增大.采用电感耦合等离子体(ICP)与XPS,发现铂的表面富集现象,并且铂表面富集现象随着铂壳层厚度的增大而增大.在半电池中,经过循环伏安扫描活化,Pd核@Pt壳表现出明显的铂的氢吸附与脱附特征峰,再次证明了铂壳层的成功包覆.Pd核@Pt壳纳米颗粒表现出优于Pt/C(JM)的面积比活性、质量比活性及电化学稳定性.核壳结构的良好的ORR电催化性能,来源于催化剂表面含氧物种吸附强度的减弱;上述现象归因于钯核与铂壳之间的电子效应与晶格应力效应.此处简易、清洁的核壳结构制备方法也可以用来在温和条件下制备Ni核@Pt壳等核壳结构.  相似文献   

3.
丝素蛋白质原位还原制备纳米贵金属胶体及表征   总被引:6,自引:0,他引:6       下载免费PDF全文
室温下, 不加任何还原剂, 丝素蛋白质溶液可以原位还原贵金属前驱体制备纳米贵金属胶体, 用光谱法研究了还原反应机理以及pH和反应物摩尔比对反应的影响, 用FT-IR, TEM, AFM对所得溶胶结构作了表征. TEM照片显示丝素-金溶胶为新颖核-壳纳米结构的生物缀合物(bioconjugate), 丝素-银溶胶为十几个核-壳型结构的丝素-银纳米颗粒聚集成的簇状物. 金溶胶具有高度的分散性和稳定性, 而银溶胶相对而言较差.  相似文献   

4.
质子交换膜燃料电池(PEMFC)作为一种清洁、高效的能源转化装置,已经备受学术界与产业界的关注.然而,高活性、高稳定性与低成本的铂基阴极氧还原(ORR)电催化剂的缺乏,严重限制PEMFC的大规模商业化应用.为提高贵金属铂的电催化性能,核壳纳米结构的研究受到广范关注.然而,核壳纳米结构的制备过程通常需要采用有机前驱体、表面活性剂与较高的反应温度,导致大多核壳结构制备方法的大规模应用受到限制.我们在室温下无表面活性剂与高沸点溶剂的参与下,通过钯表面吸附的解离的氢原子来还原K_2PtCl_4,得到Pd_核@Pt_壳纳米结构.通过改变加入K_2PtCl_4的量,可以成功控制壳的厚度;通过透射电子显微镜(TEM)观察得知,我们制备了铂壳厚度分别为0.45,0.75,0.9 nm的核壳结构.Pd_核@Pt_壳纳米结构的良好的纳米晶体结构与外延生长模式,通过高分辨透射电子显微镜(HRTEM)与能量色散谱仪(EDS)得到证实.同时,所制备Pd_核@Pt_壳样品的核壳结构通过高角环形暗场-扫描透射-元素分布(HAADF-STEM-EDX)表征方法,得到证实.X射线粉末衍射(XRD)表征证实,样品Pd_核@Pt_壳并无单独的Pd或Pt衍射峰出现,而是表现出良好的同种晶相结构;相对于单质Pt,样品中Pd核的存在导致Pd_核@Pt_壳核壳结构表现出一定程度的晶格紧缩.X射线光电子能谱(XPS)表明,钯核的存在导致铂壳的电子结合能增大,并且当铂壳厚度增大到一定程度后,核壳结构引起的电子效应维持不变.通过XPS分峰拟合可知,Pd_核@Pt_壳结构中零价态的铂含量均在80%以上,并且零价态的铂含量随着铂壳层厚度的增大而增大.采用电感耦合等离子体(ICP)与XPS,发现铂的表面富集现象,并且铂表面富集现象随着铂壳层厚度的增大而增大.在半电池中,经过循环伏安扫描活化,Pd_核@Pt_壳表现出明显的铂的氢吸附与脱附特征峰,再次证明了铂壳层的成功包覆.Pd_核@Pt_壳纳米颗粒表现出优于Pt/C(JM)的面积比活性、质量比活性及电化学稳定性.核壳结构的良好的ORR电催化性能,来源于催化剂表面含氧物种吸附强度的减弱;上述现象归因于钯核与铂壳之间的电子效应与晶格应力效应.此处简易、清洁的核壳结构制备方法也可以用来在温和条件下制备Ni_核@Pt_壳等核壳结构.  相似文献   

5.
以溶剂热法制备氨基功能化的Fe_3O_4纳米颗粒为磁核,结合溶胶-凝胶法和模板法在其表面先后包覆上致密的SiO_2层和介孔TiO_2层,制备了磁性-发光-微波热转换性-介孔结构为一体的多功能核-壳结构纳米复合颗粒,并对其结构、性能及载药能力进行了研究。XRD分析表明:Fe_3O_4表面包覆上了无定形结构的SiO_2和TiO_2。TEM照片表明:所得的纳米复合颗粒具有明显的核壳结构和完美的球形,构成核的Fe_3O_4颗粒的尺寸在40~50 nm之间,Fe_3O_4@SiO_2@mTiO_2核壳结构纳米复合颗粒的尺寸为60~70 nm,壳层厚度约10 nm,并可观察到壳层中清晰的孔状结构。磁性、荧光光谱和微波热转换特性分析表明:该复合颗粒同时具有良好的发光性、磁性和微波热转换特性。N_2气吸附及药物负载率分析表明,该复合颗粒具有较高的比表面积(640 m~2·g~(-1))和介孔结构(孔径约2.8 nm)并且具有较高的药物负载率。  相似文献   

6.
Ag_2O是优良的感光材料,很少作为光催化材料,而常被用作光催化材料的共催化剂.此外,由于Ag_2O禁带宽度窄,且可有效吸收近红外光,因而不能用于全太阳光谱的光催化应用中.同时很少被用作NIR催化剂.本文中不仅研究了纳米Ag_2O颗粒的UV-Vis光催化性能,而且还系统探究了其NIR光催化活性.由于在紫外线和可见光的照射下,Ag_2O纳米颗粒易发生光还原失活,因而对Ag_2O表面硫化处理,使其表面上生长Ag_2S_2O_7层以形成Ag_2S_2O_7/Ag_2O异质结,探究了该异质结UV-Vis光催化活性及其光催化循环稳定性;同时,考察了其近红外光催化及其重复使用性能.利用沉淀法成功制备了Ag_2O纳米颗粒,并通过在其表面部分硫化处理得到Ag_2S_2O_7,成功构筑Ag_2S_2O_7/Ag_2O异质结构,并研究了该Ag_2S_2O_7/Ag_2O异质结构UV-Vis-NIR光催化降解有机污染物性能.研究表明,Ag_2O纳米颗粒在光子能量较低的NIR照射条件下具有较强的光催化活性,但UV-Vis照射下,虽然Ag_2O具有光催化活性,但易发生光还原生成单质银,降低其光催化稳定性;Ag_2S_2O_7/Ag_2O纳米异质结,虽然在UV-Vis-NIR范围内光催化活性略降于Ag_2O,但稳定性显著提高,总体来看,Ag_2S_2O_7/Ag_2O异质结构在全光谱催化方面更具优势.这主要是由于Ag_2O表面部分硫化得到的Ag_2S_2O_7纳米颗粒,且二者之间能带匹配促进了光生载流子分离,同时Ag_2O表面的Ag_2S_2O_7颗粒直接吸收能量较高的UV-Vis,进而保护内部Ag_2O,抑制了其自身还原,可显著提高Ag_2S_2O_7/Ag_2O异质结在UV-Vis-NIR催化活性及稳定性.实验结果分析表明,Ag_2S_2O_7/Ag_2O异质结纳米颗粒在UV-Vis-NIR条件下均具有稳定且高效的光催化活性,其主要原因为:(1)具有窄带隙的Ag_2O可有效拓宽该异质结的光谱吸收;(2)Ag_2S_2O_7/Ag_2O异质结能带匹配可有效促使光生载流子分离;(3)Ag_2O颗粒表面的Ag_2S_2O_7纳米颗粒可有效提高Ag_2S_2O_7/Ag_2O异质结纳米颗粒的光化学稳定性,尤其是在UV-Vis条件下的化学稳定性.Ag_2O纳米颗粒受到光照(UV-Vis-NIR)激发后产生电子-空穴对,由于Ag_2S_2O_7与Ag_2O能带位置的匹配,Ag_2O导带的光生电子注入Ag_2S_2O_7的导带;而Ag_2S_2O_7价带的光生空穴注入Ag_2O的价带.Ag_2O表面的Ag_2S_2O_7颗粒可有效捕捉电子,从而阻止Ag_2O产生的电子-空穴对复合,进而提高光催化活性;同时当光子能量较高(UV以及部分短波长的Vis)时,Ag_2O表面的Ag_2S_2O_7颗粒直接吸收该部分光能,进而保护内部Ag_2O发生自身还原,因此,Ag_2S_2O_7/Ag_2O异质结纳米颗粒在UV,Vis及NIR条件下均具有稳定且高效的光催化活性,在高效利用全光谱光催化降解有机污染物方面具有较大的潜力.  相似文献   

7.
采用原位液体池透射电镜技术,在扫描透射电子显微镜(STEM)中,实时观察溶液中金属钯(Pd)在金(Au)纳米颗粒及团簇周围的异质沉积过程。通过对该动态过程的定量分析,结合高分辨透射电子显微镜(HRTEM)对样品进行形貌与结构表征,研究异质沉积的机理。结果表明,电子束辐照下Au-Pd异质结构纳米颗粒的形成存在两种主要机制:第一种机制中,Pd在Au纳米颗粒表面的生长是以岛状沉积开始,随着时间推移,出现Pd岛的结构弛豫和沿着Au颗粒表面的迁移扩展。伴随Pd的不断沉积和弛豫,Au-Pd复合颗粒的外接圆直径表现为震荡生长,而Au表面的Pd覆盖率显示出随时间单调增加的趋势。第二种机制中,由于Pd单体在Au纳米颗粒上的沉积位点有限,使部分被还原的Pd在Au颗粒以外区域进行同质形核与生长形成Pd团簇,之后再与Au颗粒上的Pd岛合并。进一步的结果分析显示,Au颗粒外围的Pd沉积体为多晶结构,由随机取向的Pd纳米晶粒构成。  相似文献   

8.
采用振荡法和种子生长技术制备出核壳结构的Au@SiO2纳米颗粒及夹层结构的Au@SiO2@Ag纳米颗粒, 用HF将Au@SiO2@Ag NPs夹层的SiO2溶解, 得到内部带有粒径为30 nm的可移动金核、壳层厚度约为30 nm的中空银纳米颗粒(Au@air@Ag NPs). 用扫描电子显微镜和透射电子显微镜对所得到的纳米微球的形貌进行了表征, 并以罗丹明B为探针分子研究了Au@air@Ag 纳米颗粒的表面增强拉曼(SERS)效应, 发现Au@air@Ag 纳米颗粒是一种可应用于SERS的理想材料.  相似文献   

9.
采用光还原方法制备了核-壳结构的Ag/TiO2纳米复合粒子, 通过TEM、UV-Vis光谱和XRD表征了不同TiO2浓度下Ag/TiO2纳米复合粒子的结构和光学性质. UV-Vis光谱证明了银颗粒的存在, 且复合粒子中的银粒径随着TiO2含量的增加而增加, 同时随着TiO2浓度的增加, 银的吸收峰出现明显的增强和展宽;从TEM照片 发现, Ag/TiO2纳米复合粒子是一种以Ag为核, 外面包覆一层TiO2的核-壳结构, TiO2浓度和Ag+浓度的增加, 使得复合粒子的银颗粒粒径增大. 用Z-扫描技术, 以锁模Ti:sapphire飞秒激光器发出的脉宽为130 fs激光做光源, 在790 nm波长的光作用下, 研究了0.5%(w)Ag+含量, 不同TiO2浓度的Ag/TiO2纳米复合粒子的非线性光学特性. 结果发现, 在790 nm激光作用下, 0.25%(w)TiO2样品膜有双光子吸收和自聚焦非线性折射现象; 而当TiO2浓度为0.70%(w)时, 样品膜的非线性吸收由反饱和吸收转变为饱和吸收.  相似文献   

10.
近红外光约占入射太阳能的44%以上,为实现太阳能量的最大化利用,近红外光(NIR)驱动的光催化技术成为科学研究的热点.由于上转换荧光纳米材料(UCNPs)是优良的红外能量转换器,合金半导体Zn_xC d_(1‐x)S具有较好的化学稳定性以及生物相容性,本文发展了一种简易的水热法,将UCNPs和Zn_xC d_(1‐x)S合金结合,成功构建了NIR与可见光响应的核壳纳米结构.由于这两种材料的晶格失配度较高,很难直接外延生长,我们通过引入非晶TiO_2将形成的催化剂纳米颗粒Zn_xC d_(1‐x)S紧紧束缚在UCNPs外面形成蛋黄-蛋壳结构,在NIR光照下获得了较高的能量转换效率.首先,在UCNPs外面外延生长一层复合物,形成复合纳米结构,然后在其核壳结构外面外延生长薄层的非晶以稳定后续要制备的合金半导体Zn_xC d_(1‐x)S;在水热条件下,与醋酸镉和硫脲反应,形成UCNPs@Zn_xC d_(1‐x)S/TiO_2复合材料.在此,我们选择Yb(20%),Er(2%)作为NIR的能量转换器.样品的形貌、物相及化学组成分别采用场发射扫描电子显微镜、透射电子显微镜、X射线衍射和原子吸收光谱法进行表征.研究表明,我们成功制备了具有蛋黄-蛋壳结构的UCNPs@Zn_xC d_(1‐x)S/TiO_2纳米颗粒.此外,非晶态TiO_2将UCNPs与Zn_xC d_(1‐x)S紧密结合,对最终样品UCNPs@Zn_xC d_(1‐x)S核壳纳米粒子的形成起到重要作用.而且,合金Zn_xC d_(1‐x)S的化学组成可通过调整镉源和锌源的用量进行调节.所制备的UCNPs@Zn_xC d_(1‐x)S核壳纳米粒子在NIR光线或模拟太阳光照射下显示出高效的光化学还原Cr(Ⅵ)性能.溶液中70%以上的Cr(Ⅵ)在NIR光照射30 min后被还原为Cr(Ⅲ).本研究将为环境污水处理和太阳能利用提供一种可供选择的策略,且所制的复合纳米结构在肿瘤治疗、药物释放和能量转换等领域也有着潜在的应用价值.  相似文献   

11.
利用半导体作为催化剂,将水光催化还原为H2,为缓解全球能源危机以及环境污染问题提供了一种经济环保的途径。优化调控载流子动力学行为对提高半导体光催化分解水还原为绿色燃料-H2的活性具有十分重要的意义。目前,基于半导体异质结效应或局域表面等离激元共振的敏化过程来设计和调控半导体基异质结构体系已成为调控载流子动力学行为的一种经典策略。然而,通过精细设计异质结构,合理耦合上述敏化过程,实现载流子动力学的级联调制,从而获得高效的光催化产H2活性仍然任重道远。在本文中,我们通过原位氧化(g-C3N4的剥离和Ag2S)和还原(Ag)反应,将等离激元Ag纳米颗粒(NPs)和两种不同的半导体Ag2SNPs和g-C3N4纳米片(NSs)组装在电纺TiO2纳米纤维(NFs)中,形成了一种新型四元异质组分纳米纤维(HNFs)体系。结合时间分辨光致发光光谱,3D时域有限差分模拟以及对照实验,我们...  相似文献   

12.
Here,Ag_2S nanoparticles on reduced graphene oxide(Ag_2S NPs/RGO) nanocomposites with relatively good distribution are synthesized for the first time by conversing Ag NPs/RGO to Ag_2S NPs/RGO via a facile hydrothermal sulfurization method.As an noval catalyst for the reduction of 4-nitrophenol(4-NP),it only takes 5 min for Ag_2S NPs/RGO to reduce 98% of 4-NP,and the rate constant of the composites is almost 13 times higher than that of Ag NPs/RGO composites.The high catalytic activity of Ag_2S NPs/RGO can be attributed to the following three reasons:(1) Like metal complex catalysts,the Ag_2S NPs is also rich with metal center Ag(δ~+),with pendant base S(δ) close to it,and thus the Ag and basic S function as the electron-acceptor and proton-acceptor centers,respectively,which facilitates the catalyst reaction;(2)RGO features the high adsorption ability toward 4-NP which provides a high concentration of 4-NP near the Ag_2S NPs;and(3) electron transfer from RGO to Ag_2S NPs,facilitating the uptake of electrons by 4-NP molecules.  相似文献   

13.
Heterogeneous Au-Pt nanostructures have been synthesized using a sacrificial template-based approach. Typically, monodispersed Au nanoparticles are prepared first, followed by Ag coating to form core-shell Au-Ag nanoparticles. Next, the galvanic replacement reaction between Ag shells and an aqueous H(2)PtCl(6) solution, whose chemical reaction can be described as 4Ag + PtCl(6)(2-)→ Pt + 4AgCl + 2Cl(-), is carried out at room temperature. Pure Ag shell is transformed into a shell made of Ag/Pt alloy by galvanic replacement. The AgCl formed simultaneously roughens the surface of alloy Ag-Pt shells, which can be manipulated to create a porous Pt surface for oxygen reduction reaction. Finally, Ag and AgCl are removed from core-shell Au-Ag/Pt nanoparticles using bis(p-sulfonatophenyl)phenylphosphane dihydrate dipotassium salt to produce heterogeneous Au-Pt nanostructures. The heterogeneous Au-Pt nanostructures have displayed superior catalytic activity towards oxygen reduction in direct methanol fuel cells because of the electronic coupling effect between the inner-placed Au core and the Pt shell.  相似文献   

14.
Localized surface plasmon resonance(LSPR) enhanced photocatalysis has fascinated much interest and considerable efforts have been devoted toward the development of plasmonic photocatalysts.In the past decades,noble metal nanoparticles(Au and Ag) with LSPR feature have found wide applications in solar energy conversion.Numerous metal-based photocatalysts have been proposed including metal/semiconductor heterostructures and plasmonic bimetallic or multimetallic nanostructures.However,high cost and...  相似文献   

15.
以AgNO3, Na2HPO4和硫粉为原料, 采用共沉淀-水热法合成了具有太阳光响应型Ag2S/Ag3PO4复合材料, 运用扫描电子显微镜(SEM)、 X射线粉末衍射(XRD)、 X射线光电子能谱(XPS)和紫外-可见漫反射(UV-Vis DR)光谱等方法对样品进行了表征, 并在模拟太阳光条件下, 考察了Ag2S/Ag3PO4对水杨酸的光催化降解效率. 结果表明, 与Ag3PO4相比, Ag2S的负载量为1%(质量分数)时Ag2S/Ag3PO4粒径变小, 呈立方晶相结构; Ag2S/Ag3PO4复合材料可以有效促进光生电子-空穴分离, 使Ag3PO4禁带宽度降低到2.24 eV, 并增强了可见光的吸收能力. 在Ag2S负载量为1%, 120 ℃水热4 h条件下, Ag2S/Ag3PO4复合材料具有最佳光催化活性, 经模拟太阳光照射60 min对10 mg/L的水杨酸去除率达到88.2%.  相似文献   

16.
Core–shell noble metal catalysts have gained significant attention in the past few decades, as they not only reduce the use of noble metals effectively but also exhibit unique properties derived from the synergistic effect between core and shell metals. In particular, regulating the surface structure of shells to maximize the atomic utilization efficiency of noble metals is critically important. Controlling the shell thickness of noble metal catalysts at the atomic level as an efficient approach to realize this goal has been attracting growing attention; this approach involves the formation of ultrathin shells (typically 2–6 atomic layers), monolayers, or even atomically dispersed noble metals embedded in the host metal. These strategies drive the core/support metals to improve the number of active sites and the intrinsic activity of the deposited noble metals remarkably, meanwhile minimizing the usage of noble metals. Herein, recent advances regarding atomic control of the core–shell noble metal catalysts is reviewed, with focus on the surface regulation. First, synthesis methods and surface structures are summarized, and then catalytic applications of these architectures are highlighted.  相似文献   

17.
采用水热法合成了一种微球状的CuS/Ag2S纳米复合物. 通过透射电子显微镜、 紫外-可见吸收光谱和拉曼光谱等对其形貌及光学性质进行了表征; 考察了其类过氧化物酶性质, 并通过表面增强拉曼散射原位监测了类过氧化物酶催化反应. 以3,3',5,5'-四甲基联苯胺(TMB)为底物进行显色反应, 结果表明, 在H2O2存在下CuS/Ag2S 纳米复合物具有类过氧化物酶的性质, 可以将无色的TMB氧化成蓝色的oxTMB. 基于此实现了对微量H2O2的检测.  相似文献   

18.
采用先后沉淀法制备了Ag2CO3/Bi2O2CO3(BOC)复合光催化剂. 扫描电子显微镜和透射电子显微镜表征结果表明, 尺寸为8.0~18.5 nm的Ag2CO3颗粒均匀分散于BOC纳米片表面. 两种半导体之间所形成的良好p-n异质界面效应拓宽了BOC的光吸收范围, 并有效促进了光生电子-空穴对的分离. Ag2CO3/BOC复合光催化剂的催化活性明显提高, 其中Ag2CO3含量(质量分数)为0.62%时活性最佳, 降解罗丹明B的速率常数为纯BOC的2.8倍. 结合催化过程中的活性物种研究和两种半导体的相对能带位置, 提出了p-n异质界面空间电荷层的形成以及载流子分离和迁移机制.  相似文献   

19.
The galvanic replacement reaction between silver and chloroauric acid has been exploited as a powerful means for preparing metal nanostructures with hollow interiors. Here, the utility of this approach is further extended to produce complex core/shell nanostructures made of metals by combining the replacement reaction with electroless deposition of silver. We have fabricated nanorattles consisting of Au/Ag alloy cores and Au/Ag alloy shells by starting with Au/Ag alloy colloids as the initial template. We have also prepared multiple-walled nanoshells/nanotubes (or nanoscale Matrioshka) with a variety of shapes, compositions, and structures by controlling the morphology of the template and the precursor salt used in each step of the replacement reaction. There are a number of interesting optical features associated with these new core/shell metal nanostructures. For example, nanorattles made of Au/Ag alloys displayed two well-separated extinction peaks, a feature similar to that of gold or silver nanorods. The peak at approximately 510 nm could be attributed to the Au/Ag alloy cores, while the other peak was associated with the Au/Ag alloy shells and could be continuously tuned in the spectral range from red to near-infrared.  相似文献   

20.
Customizing core-shell nanostructures is considered to be an efficient approach to improve the catalytic activity of metal nanoparticles. Various physiochemical and green methods have been developed for the synthesis of core-shell structures. In this study, a novel liquid-phase hydrogen reduction method was employed to form core-shell Pt@Au nanoparticles with intimate contact between the Pt and Au particles, without the use of any protective or structure-directing agents. The Pt@Au core-shell nanoparticles were prepared by depositing Au metal onto the Pt core; AuCl4− was reduced to Au(0) by H2 in the presence of Pt nanoparticles. The obtained Pt@Au core-shell structured nanoparticles were characterized by transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), high-resolution TEM, fast Fourier transform, powder X-ray diffraction (PXRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), and H2-temperature programmed reduction (H2-TPR) analyses. The EDX mapping results for the nanoparticles, as obtained from their scanning transmission electron microscopy images in the high-angle annular dark-field mode, revealed a Pt core with Au particles grown on its surface. Fourier transform measurements were carried out on the high-resolution structure to characterize the Pt@Au nanoparticles. The lattice plane at the center of the nanoparticles corresponded to Pt, while the edge of the particles corresponded to Au. With an increase in the Au content, the intensity of the peak corresponding to Pt in the FTIR spectrum decreased slowly, indicating that the Pt nanoparticles were surrounded by Au nanoparticles, and thus confirming the core-shell structure of the nanoparticles. The XRD results showed that the peak corresponding to Pt shifted gradually toward the Au peak with an increase in the Au content, indicating that the Au particles grew on the Pt seeds; this trend was consistent with the FTIR results. Hence, it can be stated that the Pt@Au core-shell structure was successfully prepared using the liquid-phase hydrogen reduction method. The catalytic activity of the nanoparticles for the oxidation of toluene was evaluated using a fixed-bed reactor under atmospheric pressure. The XPS and H2-TPR results showed that the Pt1@Au1/Al2O3 catalyst had the best toluene oxidation activity owing to its lowest reduction temperature, lowest Au 4d & 4f and Pt 4d & 4f binding energies, and highest Au0/Auδ+ and Pt0/Pt2+ proportions. The Pt1@Au2Al2O3 catalyst showed high stability under dry and humid conditions. The good catalytic performance and high selectivity of Pt@Au/Al2O3 for toluene oxidation could be attributed to the high concentration of adsorbed oxygen species, good low-temperature reducibility, and strong interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号