首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 495 毫秒
1.
Electron cyclotron resonance (ECR) plasma breakdown is studied in a small linear cylindrical system with four different gases — hydrogen, helium, argon and nitrogen. Microwave power in the experimental system is delivered by a magnetron at 2.45 ± 0.02 GHz in TE10 mode and launched radially to have extra-ordinary (X) wave in plasma. The axial magnetic field required for ECR in the system is such that the fundamental ECR surface (B = 875.0 G) resides at the geometrical centre of the plasma system. ECR breakdown parameters such as plasma delay time and plasma decay time from plasma density measurements are carried out at the centre using a Langmuir probe. The operating parameters such as working gas pressure (1 × 10−5−1× 10−2 mbar) and input microwave power (160–800 W) are varied and the corresponding effect on the breakdown parameters is studied. The experimental results obtained are presented in this paper.   相似文献   

2.
We study experimentally the possibility of using the recombination continuum (RC) emitted by a nonequilibrium plasma of the positive column (PC) of a Cs–Xe discharge for real-time imaging of the spatial distribution of microwave intensity. A uniform plane slab of dense plasma of the PC of a Cs–Xe discharge with aperture 10×8 cm2 was used for the imaging. A continuous-wave (CW) magnetron was the microwave source with frequency 35.4 GHz and power up to 20 W. We measured the dependence of the RC intensity on the intensity of the microwaves incident on the plasma. Spatial distributions of the microwave intensity for a microwave beam and the H01 mode of a circular waveguide were imaged. The results of these experiments show that spatial distributions of microwave intensity measured using RC agree well with the distributions obtained using other methods. A temporal resolution of 10 μs was demonstrated and an energy-flux sensitivity of about 4·10-5 J/cm2 was achieved in the microwave-imaging experiments.  相似文献   

3.
A 3.7 GHz system, which is meant for LHCD experiments on ADITYA tokamak, is used for producing ECR discharge. The ECR discharge is produced by setting the appropriate resonance magnetic field of 0.13 T, with hydrogen at a fill pressure of about 5 × 10−5 Torr. The RF power, up to 10 kW (of which ∼50% is reflected back), with a typical pulse length of 50 ms, is injected into the vacuum chamber of the ADITYA tokamak by a LHCD grill antenna and is used for plasma formation. The average coupled RF power density (the RF power/a typical volume of the plasma) is estimated to be ∼5 kW/m3. When the ECR appears inside the tokamak chamber for the given pumping frequency (f = 3.7 GHz) a plasma with a density (n e) ∼ 4 × 1016 m−3 and electron temperature ∼8 eV is produced. The density and temperature during the RF pulse are measured by sets of Langmuir probes, located toroidally, on either side of the antenna. Hα signals are also monitored to detect ionization. An estimate of density and temperature based on simple theoretical calculation agrees well with our experimental measurements. The plasma produced by the above mechanism is further used to characterize the ECR-assisted low voltage Ohmic start-up discharges. During this part of the experiments, Ohmic plasma is formed using capacitor banks. The plasma loop voltage is gradually decreased, till the discharge ceases to form. The same is repeated in the presence of ECR-formed plasma (RF pre-ionization), formed 10 ms prior to the loop voltage. We have observed that (with LHCD-induced) ECR-assisted Ohmic start-up discharges is reliably and repeatedly obtained with reduced loop voltage requirement and breakdown time decreases substantially. The current ramp-up rates also decrease with reduced loop voltage operation. These studies established that ECR plasma formed with LHCD system exhibits similar characteristics as reported earlier by dedicated ECR systems. This experiment also addresses the issue of whether ECR plasma formed with grill antenna exhibits similar behavior as that formed by single waveguide ECR antenna. Our experimental observations suggest that the characteristics of (LHCD system-induced) ECR-assisted Ohmic start-up discharges show similar properties, reported earlier with normal ECR-assisted Ohmic start-up discharges and hence LHCD system may be used as ECR system at reduced toroidal magnetic field for other applications like wall conditioning.   相似文献   

4.
为了准确诊断真空中微波等离子体喷流的电子数密度,利用统一的发射和单郎缪尔探针测量等离子体的空间电位,再测量等离子体的电流-电压特性曲线.根据空间电位测量结果,在等离子体的电流-电压特性曲线上能准确地获取饱和电流,从而处理出电子数密度.最后的诊断实验表明,当真空环境压强为2—6 Pa、等离子体发生器以60 W以下的微波功率击穿流量范围是42—106 mg/s的氩气时,所产生的微波等离子体喷流中电子数密度分布在1×1016—7.2×1016/m3范围内.  相似文献   

5.
Vipin K. Yadav  D. Bora 《Pramana》2004,63(3):563-577
Electron cyclotron resonance (ECR) plasma is produced and studied in a small cylindrical system. Microwave power is delivered by a CW magnetron at 2.45 GHz in TE10 mode and launched radially to have extraordinary (X) wave in plasma. The axial magnetic field required for ECR in the system is such that the first two ECR surfaces (B = 875.0 G andB = 437.5 G) reside in the system. ECR plasma is produced with hydrogen with typical plasma density ne as 3.2 × 1010 cm-3 and plasma temperature Te between 9 and 15 eV. Various cut-off and resonance positions are identified in the plasma system. ECR heating (ECRH) of the plasma is observed experimentally. This heating is because of the mode conversion of X-wave to electron Bernstein wave (EBW) at the upper hybrid resonance (UHR) layer. The power mode conversion efficiency is estimated to be 0.85 for this system. The experimental results are presented in this paper.  相似文献   

6.
宋法伦  张永辉  向飞  常安碧 《物理学报》2008,57(3):1807-1812
利用数值计算与粒子模拟两种方法,结合实际的实验数据,对高功率微波二极管中相对论电子束与背景气体相互作用碰撞产生的等离子体密度进行了研究.研究结果表明:碰撞产生的等离子体密度数值计算结果与粒子模拟结果基本一致,背景气压在0.01 Pa—0.05 Pa时,碰撞产生的等离子体密度在4—12×109cm-3,即便在考虑电子离子复合的情况下,数值计算结果与粒子模拟结果依然符合得很好.另外,粒子模拟结果表明:随着气压的增加,等离子体密度呈现先增大再减小然后又逐渐增大的过程, 关键词: 相对论电子束 等离子体 数值计算 粒子模拟  相似文献   

7.
In this paper, atmospheric pressure glow discharges (APGD) in argon generated in parallel plate dielectric barrier discharge system is investigated by means of electrical and optical measurements. Using a high voltage (0–20 kV) power supply operating at 10–30 kHz, homogeneous and steady APGD has been observed between the electrodes with gap spacing from 0.5 mm to 2 mm and with a dielectric barrier of thickness 2 mm while argon gas is fed at a controlled flow rate of 1 l/min. The electron temperature and electron density of the plasma are determined by means of optical emission spectroscopy. Our results show that the electron density of the discharge obtained is of the order of 1016 cm???3 while the electron temperature is estimated to be 0.65 eV. The important result is that electron density determined from the line intensity ratio method and stark broadening method are in very good agreement. The Lissajous figure is used to estimate the energy deposited to the glow discharge. It is found that the energy deposited to the discharge is in the range of 20 to 25 μJ with a discharge voltage of 1.85 kV. The energy deposited to the discharge is observed to be higher at smaller gas spacing. The glow discharge plasma is tested to be effective in reducing the hydrophobicity of polyethylene film significantly.  相似文献   

8.
杨涓  许映乔  朱良明 《物理学报》2008,57(3):1788-1791
为了研究局域真空环境中微波等离子体喷流电子数密度的分布规律及其影响因素,利用发射/郎缪尔探针测量等离子体的空间电位,再测量等离子体的电流-电压特性曲线,根据空间电位测量结果,在等离子体的电流-电压特性曲线上能准确地获取饱和电流,从而处理出电子数密度.最后的诊断实验表明:在有约束边界条件下,微波等离子体发生器以60 W以下的微波功率击穿流量范围是21—105 mg/s的氩气时,所产生的喷流中电子数密度分布在8.8×1014—7.53×1016/m3关键词: 等离子体诊断技术 等离子体基本过程 等离子体基本特性  相似文献   

9.
《Physics letters. A》1996,223(6):458-462
Plasma density was measured with a heterodyne microwave interferometer in both a gas-filled X-band backward wave oscillator (BWO) and in a smooth tube. Plasma is generated by impact ionization of a 650 kV, 2 kA electron beam. For fixed gas pressure we found that the plasma density rise in the operating BWO was much faster than in a smooth tube, indicating that Trivelpiece-Gould modes, or high power microwaves, increase plasma generation. Additional plasma enhanced BWO microwave output power. Measured plasma density at optimum power levels was ncr ≈ 6 × 1012cm−3 at onset of emitted microwaves.  相似文献   

10.
杜寅昌  曹金祥  汪建  郑哲  刘宇  孟刚  任爱民  张生俊 《物理学报》2012,61(19):195206-195206
本文利用微波相位法和光谱诊断法, 研究了ICP放电等离子体在圆台状夹层等离子体中E模和H模相互转换的物理现象. E模和H模的之间转换过程是一个瞬间突变的, 转换点的输入功率随真空室压强的变化而变化. H模向E模转换的阈值功率低于E模向H模转换的值, 等离子体参数随输入功率变化曲线类似于铁磁物质中的磁滞回线. Ar II 408.2 nm谱线的强度的变化规律和电子密度随功率变化的规律基本一致. 通过本实验可以获得一种电子密度范围为3.85×1011 cm-3 < ne < 4.68× 1011 cm-3, 外表面积为0.3 m2, 厚度为2 cm稳定工作的等离子体源.  相似文献   

11.
为了解并优化在电子回旋共振等离子体辅助化学汽相沉积GaN晶膜的工艺研究中的等离子体特性,利用朗缪尔探针及法拉第筒系统地测量了离子密度(Ni)、等离子体势(Vp)、电子温度(Te)及离子流强(Ji)等多个等离子体参量随微波功率(Pw)及沉膜室气压(p)变化的关系.给出了在Pw=850W,p=0.22Pa时,上述等离子体参量的轴向及径向分布.GaN晶膜的生长速率、电学及晶体学性能 关键词:  相似文献   

12.
The properties of plasma injected into an open magnetic trap of uniform field from an independent UHF source have been investigated. Plasma is created in the UHF source at the frequency of 2400 MHz (power input 150 W) in the electron cyclotron resonance (ECR) regime at the pressure of neutral argon (10−5−10−2) torr. It is established that a rather quiescent target plasma with controlled density within the range of (2 × 108−2 × 1012) cm−3 and temperature 2–3eV is accumulated in the trap. It turned out that plasma lifetime in the trap is determined by a classical mechanism of particle escape at the expense of collisions, at fixed value of magnetic field in the trap it practically is not changed with the variation of neutral gas pressure and reaches the value ≈ 4×10−3 s at the magnetic field strength in the trap equal 1600 Oe.  相似文献   

13.
A sequential three-dimensional (3D) particle-in-cell simulation code PICPSI-3D with a user friendly graphical user interface (GUI) has been developed and used to study the interaction of plasma with ultrahigh intensity laser radiation. A case study of laser–plasma-based electron acceleration has been carried out to assess the performance of this code. Simulations have been performed for a Gaussian laser beam of peak intensity 5 × 1019 W/cm2 propagating through an underdense plasma of uniform density 1 × 1019 cm − 3, and for a Gaussian laser beam of peak intensity 1.5 × 1019 W/cm2 propagating through an underdense plasma of uniform density 3.5 × 1019 cm − 3. The electron energy spectrum has been evaluated at different time-steps during the propagation of the laser beam. When the plasma density is 1 × 1019 cm − 3, simulations show that the electron energy spectrum forms a monoenergetic peak at ~14 MeV, with an energy spread of ±7 MeV. On the other hand, when the plasma density is 3.5 × 1019 cm − 3, simulations show that the electron energy spectrum forms a monoenergetic peak at ~23 MeV, with an energy spread of ±7.5 MeV.  相似文献   

14.
射频击穿等离子体对高功率微波传输特性的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
利用极化正交的高功率微波合路器,开展了等离子体对于微波传输特性的实验研究.通过改变前级源的功率和脉冲宽度,使得在合路器耦合缝处发生射频击穿,产生等离子体.等离子体扩散进入微波传输主通道,对于高功率微波的传输产生明显的影响,导致微波能量吸收和极化的偏转.初步实验结果表明,等离子体扩散到主通道中心的时间约为3μs,扩散速度约为1μs/cm,等离子体的恢复时间约为5μs.实验测得等离子体导致的微波极化方向最大偏转角度约为4.1?,此时通道内电子个数约为3.7×1015,极化偏转角度与电子数密度以及微波频率相关.  相似文献   

15.
The paper is devoted to the investigation of the electron cyclotron resonance (ECR) discharge in the decreasing magnetic field in the pressure range from 0.02 Pa to 90 Pa and the absorbed microwave power from 50 W to 400 W. For a discharge characterization we used the floating potentialU fl and the saturated ion current densityi sat + . The influence of the substrate holder presence on the plasma microparameters was studied. It was shown that for the substrate holder located near ECR at pressures below 0.3 Pa mainly the magnitude ofU fl strongly depends on the pressurep, the absorbed microwave powerP a, and the position of the substrate holder with respect to ECR. The values ofU fl in the plasma in which the substrate holder is inserted strongly differ from those in the plasma without the substrate holder.U fl of low pressuresp<0.05 Pa achieves high positive values of about +50 V and this results in sputtering of chamber walls.  相似文献   

16.
A DC glow discharge produced in N2 gas can generate several species that are important in different applications, such as the modification of surface properties of materials. A low-pressure glow discharge apparatus was used for the the analysis of the Ar–N2 mixture at a total pressure of 2.0 Torr, a power of 20 W and 40 l/min flow rate of gases. The emission bands were measured in the wavelength range of 200–1100 nm. The principal elements are N2, N 2+ and Ar I. The electron temperature was found in the range of 1.72–2.08 eV, and the ion density was in the order of 1010 cm?3.  相似文献   

17.
18.
The study of conditions for obtaining quasi-stationary scenarios in the T-15MD tokamak is performed. Results of simulation and optimization of T-15MD regimes with a fully noninductive current drive using NBICD systems with the power of 6–8 MW, ECCD system with the power ~8 MW, and RFCD system with power up to 7–8 MW are presented. It is shown that, at the somewhat reduced value as compared to the basic value of the toroidal magnetic field B t ~ 1.5 T in the T-15MD tokamak, discharges can be produced with a fully noninductive current of about 1 MA, plasma temperature of several keV, plasma density of about (3–7) × 1019 m–3, and discharge duration of about 20 s. Such discharges are of interest for further experimental study.  相似文献   

19.
Abstract

A 27.12 MHz low flow (3 1/min), laminar flow, atmospheric pressure neon ICP has been generated. The forward power used is 500 W with a reflected power of less than 5 W. Using higher powers caused the plasma to either extinguish or form numerous filaments. The Hß line is used to determine an electron number density of 8 × 1013cm?3. The N2 +(0, 0) and OH(0, 0) transitions did not readily emit. This fact, coupled with the low electron density and low input power, indicates a relatively cool plasma.  相似文献   

20.
A relationship between physical properties and local structure of 20Li2O·10Fe2O3·xWO3·(70–x)V2O5 glass, abbreviated as xLFWV glass (x?=?0???25 in mol%), was investigated by 57Fe-Mössbauer spectroscopy, Fourier transform infrared spectroscopy (FT-IR), differential thermal analysis (DTA), leaching test using 20 vol% HCl and DC two- or four-probe method. 57Fe-Mössbauer spectra of xLFWV glass showed an increase of quadrupole splitting (Δ) from 0.67 to 0.73±0.02 mm s???1 and a constant isomer shift (δ) of 0.39±0.01 mm s???1 with an increase of ‘x’ from 0 to 25. This suggests that FeIIIO4 tetrahedra gradually increase their local distortion along with a substitution of WO3 for V2O5. DTA of xLFWV glass showed an increase in glass transition temperature (T g) from 252 to 298 $_{\pm 5}^{\circ}$ C with an increase of ‘x’. Composition dependency of T g and Δ indicates that FeIII atoms occupy substitutional sites of WO6 octahedra as network former (NWF), since a large slope of 680 K (mm s???1)???1 was obtained in T g ? Δ plot. Comparable electrical conductivities (σ) of 2.5 × 10???6, 1.9 × 10???6, 8.4 × 10???7 and 2.9 × 10???6 S cm???1 obtained for xLFWV glasses with ‘x’ of 0, 10, 20 and 25, respectively increased to 2.4 × 10???2, 2.4 × 10???3, 3.5 × 10???4 and 8.8 × 10???5 S cm???1 after annealing at 400 °C for 100 min. Smaller Δ values of 0.58 and 0.67±0.02 mm s???1 obtained in annealed xLFWV glasses with ‘x’ of 0 and 10, respectively indicate that structural relaxation occurs in VO4 units of vanadate glass units, as had been observed in other vanadate glasses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号