首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adsorption of ethylene oxide, CH(2)CH(2)O (EtO), on a Au(211) stepped surface was studied by temperature programmed desorption (TPD) and Fourier transform infrared reflection-absorption spectroscopy (FT-IRAS). Ethylene oxide was completely reversibly adsorbed, and desorbed molecularly during TPD following adsorption on Au(211) at 85 K. EtO TPD peaks appeared at 115 K from the multilayer film and 140 and 170 K from the monolayer. Desorption at 140 K was attributed to EtO desorption from terrace sites, and that at 170 K to EtO desorption from step sites. Desorption activation energies and corresponding adsorption energies were estimated to be 8.4 and 10.3 kcal mol(-1), respectively. The EtO ring (C(2)O) deformation band appeared in IRAS at 865 cm(-1) for EtO in multilayer films and when adsorbed in the monolayer at terrace sites. The stronger chemisorption bonding of EtO at Au step sites slightly weakens the bonding within the molecule and causes a small red-shift of this band to 850 cm(-1) for adsorption at step sites. EtO presumably binds via the oxygen atom to the surface, and observation of the EtO-ring absorption band in IRAS establishes that the molecular ring plane of EtO adsorbed at step and terrace sites is nearly upright with respect to the crystal surface plane.  相似文献   

2.
段园  陈明树  万惠霖 《物理化学学报》2018,34(12):1358-1365
采用高分辨电子能量损失谱(HREELS)、俄歇电子能谱(AES)和低能电子衍射(LEED)研究镍单晶表面氧物种及CO与O2的共吸附。实验结果表明,Ni(111)表面氧化后存在两种氧物种,位于54 meV能量损失峰的表面化学吸附氧物种和位于69 meV能量损失峰的表面氧化镍。首先,随着暴露氧量的增加,表面化学吸附氧物种的能量损失峰蓝移至58 meV;其次,通过真空退火及与CO相互作用考察,发现表面化学吸附氧物种较不稳定。在室温条件下,表面预吸附形成的表面化学吸附氧物种与CO共吸附,导致端位吸附CO增多,表明氧优先吸附在穴位上,随着CO暴露量的增加化学吸附氧物种与CO反应脱去;而表面氧化镍需在较高温度和较高CO分压下才能被CO还原。预吸附CO可被氧逐渐移去。  相似文献   

3.
Water molecule adsorption properties on the BiVO4 (100) surface   总被引:1,自引:0,他引:1  
The water absorption properties at the surface of BiVO4 are attracting a great deal of attention because the system is a promising candidate as a photocatalyst operating in the visible light range. This has motivated the present investigation via first principles molecular dynamics, which has revealed that a H2O molecule is adsorbed molecularly, instead of dissociatively, at the fivefold Bi site with an adsorption energy of approximately 0.58 eV/molecule. The band gap of the system shrinks slightly (by approximately 0.2 eV) upon water adsorption and it is likely that oxygen atoms belonging to the adsorbed water molecules to the Bi sites are oxidized, as inferred by the small Bi-Owater equilibrium distance (approximately 2.6-2.8 A) very close to the Bi-O bond in the bulk crystal. In the case of water adsorption at a Bi site, the distance between Hwater and V, which is a reduction site, is larger than in the case of adsorption at a V site, indicating that the proton reduction processes may be suppressed.  相似文献   

4.
The adsorption of O2 on the Pt(111) surface, with particular emphasis on the influence of substrate temperature, has been studied by infrared reflection absorption spectroscopy (IRAS). In the temperature range 30-90 K the IRAS spectra reveal three different molecular adsorption states. A physisorbed state appears below 40 K while chemisorbed peroxo- and superoxo-like states are observed in the whole temperature range, the characteristic vibrational frequencies are at full coverages of 16O2, 1543 cm(-1) and around 700 cm(-1) and 870 cm(-1), respectively. Flash heating from 30 K to 45 K reveal that the physisorbed state acts as a precursor to the superoxo chemisorption. Theoretical calculations suggest that peroxo molecules may occupy both fcc and hcp threefold sites on the Pt(111) surface. However, within the high resolution of the IRAS measurements we only observe one peroxo state in the temperature range 45-90 K, assigned to occupy the fcc site. The peroxo adsorption probability is significantly lower at 45 K than at 90 K, presumably due to reduced thermal activation from the physisorbed precursor state. A longer lifetime in this precursor state at the low temperature results in formation of larger superoxo islands already at low oxygen coverage.  相似文献   

5.
The adsorption of water on perfect TiO(2)(110) surface is studied by quantum molecular dynamics simulation adopting a periodic model formed by five water molecules on a (5 x 1) surface unit cell of a five layer slab of TiO(2). The total simulation time is 3.2 ps. At about 1.3 ps, one water molecule dissociates with the help of other adsorbed waters and surface bridging oxygens. During the remaining 1.9 ps, the waters and OH groups vibrate, but no more dissociation or recombination is observed. By comparing recent experimental O1s photoemission (x-ray photoelectron spectroscopy) spectra of H(2)O/TiO(2)(110) to the computed spectrum of the adsorbate in the configurations supplied by the molecular dynamics simulation, the observed peaks can be attributed to different oxygen species. The proposed assignment of the main spectral features supports the occurrence of partial water dissociation (approximately 20%) also on a perfect TiO(2) surface.  相似文献   

6.
The adsorption of water on V2O3(0001) surfaces has been investigated by thermal desorption spectroscopy, high-resolution electron energy loss spectroscopy, and X-ray photoelectron spectroscopy with use of synchrotron radiation. The V2O3(0001) surfaces have been generated in epitaxial thin film form on a Rh(111) substrate with three different surface terminations according to the particular preparation conditions. The stable surface in thermodynamic equilibrium with the bulk is formed by a vanadyl (VO) (1x1) surface layer, but an oxygen-rich (radical3xradical3)R30 degrees reconstruction can be prepared under a higher chemical potential of oxygen (microO), whereas a V-terminated surface consisting of a vanadium surface layer requires a low microO, which can be achieved experimentally by the deposition of V atoms onto the (1x1) VO surface. The latter two surfaces have been used to model, in a controlled way, oxygen and vanadium containing defect centres on V2O3. On the (1x1) V=O and (radical3xradical3)R30 degrees surfaces, which expose only oxygen surface sites, the experimental results indicate consistently that the molecular adsorption of water provides the predominant adsorption channel. In contrast, on the V-terminated (1/radical3x1/radical3)R30 degrees surface the dissociation of water and the formation of surface hydroxyl species at 100 K is readily observed. Besides the dissociative adsorption a molecular adsorption channel exists also on the V-terminated V2O3(0001) surface, so that the water monolayer consists of both OH and molecular H2O species. The V surface layer on V2O3 is very reactive and is reoxidised by adsorbed water at 250 K, yielding surface vanadyl species. The results of this study indicate that V surface centres are necessary for the dissociation of water on V2O3 surfaces.  相似文献   

7.
Infrared reflection absorption spectroscopy (IRAS) has been used to study CO-NO and CO-O(2) interactions on Cu(100) between 25 and 200 K. A strong repulsive interaction between CO and NO on Cu(100) at 25 K causes tilting of the CO molecules away from the surface normal and a blue-shift of the CO vibrational frequency. Upon warming and decomposition of the NO, the CO molecules return to a bonding position normal to the surface plane. The vibrational frequency of CO blue-shifts from 2087 to 2136 cm(-1) upon coadsorption with N and O atoms formed from NO decomposition. On the other hand, the interaction of CO with O(2) at 27 K on Cu(100) in the submonolayer regime induces a red-shift of the CO vibrational frequency. Atomic oxygen, formed on Cu(100) by dissociation of O(2) at 95 K, induces a blue-shift of the vibrational frequency of coadsorbed CO to 2116 cm(-1). The CO vibrational frequency shifts to 2091 cm(-1) when the surface is annealed to 140 K, implying a change in the adsorption geometry of the oxygen atoms on Cu(100).  相似文献   

8.
We present a model combining ab initio concepts and molecular dynamics simulations for a more realistic treatment of complex adsorption processes. The energy, distance, and orientation of water molecules adsorbed on stoichiometric and reduced rutile TiO(2)(110) surfaces at 140 K are studied via constant temperature molecular dynamics simulations. From ab initio calculations relaxed atomic geometries for the surface and the most probable adsorption sites were derived. The study comprises (i) large two-dimensional surface supercells, providing a realistically low concentration of surface oxygen defects, and (ii) a water coverage sufficiently large to model the onset of the growth of a bulk phase of water on the surface. By our combined approach the influence of both, the metal oxide surface, below, and the bulk water phase, above, on the water molecules forming the interface between the TiO(2) surface and the water bulk layer is taken into account. The good agreement of calculated adsorption energies with experimental temperature programmed desorption spectra demonstrates the validity of our model.  相似文献   

9.
Methanol adsorption on beta-Ga2O3 surface has been studied by Fourier transform infrared spectroscopy (FTIR) and by means of density functional theory (DFT) cluster model calculations. Adsorption sites of tetrahedral and octahedral gallium ions with different numbers of oxygen vacancies have been compared. The electronic properties of the adsorbed molecules have been monitored by computing adsorption energies, optimized geometry parameters, overlap populations, atomic charges, and vibrational frequencies. The gallia-methanol interaction has different behaviors according to the local surface chemical composition. The calculations show that methanol can react in three different ways with the gallia surface giving rise to a nondissociative adsorption, a dissociative adsorption, and an oxidative decomposition. The surface without oxygen vacancies is very reactive and produces the methanol molecule decomposition. The molecule is nondissociatively adsorbed by means of a hydrogen bond between the alcoholic hydrogen atom and a surface oxygen atom and a bond between the alcoholic oxygen atom and a surface gallium atom. Two neighbor oxygen vacancies on tetrahedral gallium sites produce the dissociation of the methanol molecule and the formation of a bridge bond between two surface gallium atoms and the methoxy group.  相似文献   

10.
We have performed first‐principle density functional theory calculations to investigate O2 dissociation on Pt(111) surface. A stepwise mechanism has been proposed. First, the adsorbed O2 dissociate into two oxygen atoms to get adsorbed on the nearby adsorption sites. Then, oxygen atoms further migrate to other more stable adsorption sites. The influence of solvent water on oxygen dissociation was also examined. The results show that the co‐adsorption of water has little impact on O2 dissociation. However, when water participates in the reaction, the energy barriers were reduced greatly. These results have very important significance to understand the mechanism of oxygen reduction. © 2016 Wiley Periodicals, Inc.  相似文献   

11.
Ito M  Nakamura M 《Faraday discussions》2002,(121):71-84; discussion 97-127
Water adsorption on Pt( 111) and Ru(001) treated with oxygen, hydrogen chloride and sodium atom at 20 K has been studied by Fourier transform infrared spectroscopy, scanning tunneling microscopy and surface X-ray diffraction. Water molecules chemisorb predominantly on the sites of the electronegative additives, forming hydrogen bonds. Three types of hydration water molecules coordinate to an adsorbed Na atom through an oxygen lone pair. In contrast, water molecules adsorb on electrode surfaces in a simple way in solution. In 1 mM CuSO4 + 0.5 M H2SO4 solution on an Au(111) electrode surface, water molecules coadsorb not only with sulfuric acid anions through hydrogen bonding but also with copper, over wide potential ranges. In the first stage of underpotential deposition (UPD), each anion is accommodated by six copper hexagon (honeycomb) atoms on which water molecules dominate. At any UPD stage water molecules interact with both the copper atom and sulfuric acid anions on the Au(111) surface. Water molecules also coadsorb with CO molecules on the surface of 2 x 2-2CO-Ru(001). All of the hydration water molecules chemisorb weakly on the surfaces. There appears to be a correlation between the orientation of hydrogen bonding water molecules and the electrode potential.  相似文献   

12.
The adsorption of NO molecules on the perfect and defective (110) surfaces of SnO2 was studied with first-principles methods at the density-functional theory level. It was found that NO mainly interacts via the nitrogen atom with the bridging oxygens of the stoichiometric surface while the coordinatively unsaturated surface Sn atoms are less reactive. On the oxygen-deficient surface, NO is preferentially adsorbed at the vacancy positions, with the nitrogen atom close to the former surface oxygen site. Regardless of the adsorption site, the unpaired electron is located mainly on the NO molecule and only partly on surface Sn atoms. The results for the SnO2 surface are compared to literature results on the isostructural TiO2 rutile (110) surface. Dedicated to Professor Karl Jug on the occasion of his 65th birthday  相似文献   

13.
1 INTRODUCTION The interfaces between metals and oxide play a vital role in many industrial applications: hetero- geneous catalysis, microelectronics, thermal barriers, corrosion protection, metal processing and so on[1]. In catalysis, the choice of metal and oxide support is critical in order to obtain a desired reactivity and selectivity[2]. This is due in part to the inherent reac- tivity of the two components. Also the size and shape of the metal particle, which depend on the choice…  相似文献   

14.
The chiral molecule (R,R)-tartaric acid adsorbed on nickel surfaces creates highly enantioselective heterogeneous catalysts, but the nature of chiral modification remains unknown. Here, we report on the behavior of this chiral molecule with a defined Ni(110) surface. A combination of reflection absorption infrared spectroscopy, scanning tunneling microscopy, and periodic density functional theory calculations reveals a new mode of chiral induction. At room temperatures and low coverages, (R,R)-tartaric acid is adsorbed in its bitartrate form with two-point bonding to the surface via both carboxylate groups. The molecule is preferentially located above the 4-fold hollow site with each carboxylate functionality adsorbed at the short bridge site via O atoms placed above adjacent Ni atoms. However, repulsive interactions between the chiral OH groups of the molecule and the metal atoms lead to severely strained adsorption on the bulk-truncation Ni(110) surface. As a result, the most stable adsorption structure is one in which this adsorption-induced stress is alleviated by significant relaxation of surface metal atoms so that a long distance of 7.47 A between pairs of Ni atoms can be accommodated at the surface. Interestingly, this leads the bonding Ni atoms to describe a chiral footprint at the surface for which all local mirror symmetry planes are destroyed. Calculations show only one chiral footprint to be favored by the (R,R)-tartaric acid, with the mirror adsorption site being unstable by 6 kJ mol(-1). This energy difference is sufficient to enable the same local chiral reconstruction and motif to be sustained over 90% of the system, leading to an overall highly chiral metal surface.  相似文献   

15.
Scanning tunneling microscope (STM) images of isolated molecules of dimethyl disulfide, (CH(3)S)(2), adsorbed on the Cu(111) surface were successfully obtained at a sample temperature of 4.7 K. A (CH(3)S)(2) molecule appears as an elliptic protrusion in the STM images. From density functional theory calculation, it was suggested that the bright part in the protrusion corresponds to the molecular orbital which is widely spread around H atoms in each CH(3) group in the (CH(3)S)(2) molecule. The STM images revealed that the molecules have a total of six equivalent adsorption orientations on Cu(111), which are given by the combination of three equivalent adsorption sites and two conformational isomers for each adsorption site.  相似文献   

16.
The initial growth of a water (D2O) layer on (1 x 1)-oxygen-covered Ru(0001) has been studied in comparison with that on bare Ru(0001) by means of temperature-programmed desorption (TPD) and infrared reflection absorption spectroscopy (IRAS). Although water molecules adsorbed on both bare and (1 x 1)-oxygen-covered Ru(0001) commonly tend to form hydrogen bonds with each other when mobility occurs upon heating, the TPD and IRAS measurements for the two surfaces exhibit distinct differences. On (1 x 1)-oxygen-covered Ru(0001), most of the D2O molecules were desorbed with a peak at 160 K, even at submonolayer coverage, as condensed water desorption. The vibration spectra of adsorbed D2O also showed broad peaks such as a condensed water phase, from the beginning of low coverage. For submonolayer coverage, in addition, we found a characteristic O-D stretching mode at around 2650 cm(-1), which is never clearly observed for D2O on bare Ru(0001). Thus, we propose a distinctive water adsorption structure on (1 x 1)-oxygen-covered Ru(0001) and discuss its influence on water layer growth in comparison with the case of D2O on bare Ru(0001).  相似文献   

17.
The adsorption mechanism of water on the hydroxylated (001) plane of α-Al(2)O(3) was studied by measuring adsorption isotherms and GCMC simulations. The experimental adsorption isotherms for three α-Al(2)O(3) samples from different sources are typical type II, in which adsorption starts sharply at low pressures, suggesting a high affinity of water to the Al(2)O(3) surface. Water molecules are adsorbed in two registered forms (bilayer structure). In the first form, water is registered at the center of three surface hydroxyl groups by directing a proton of the water. In the second form, a water molecule is adsorbed by bridging two of the first-layer water molecules through hydrogen bonding, by which a hexagonal ring network is constructed over the hydroxylated surface. The network domains are spread over the surface, and their size decreases as the temperature increases. The simulated adsorption isotherms present a characteristic two-dimensional (2D) phase diagram including a 2D critical point at 365K, which is higher than that on the hydroxylated Cr(2)O(3) surface (319 K). This fact substantiates the high affinity of water molecules to the α-Al(2)O(3) surfaces, which enhances the adsorbability originating from higher heat of adsorption. The higher affinity of water molecules to the α-Al(2)O(3) (001) plane is ascribed to the high compatibility of the crystal plane to form a hexagonal ring network of (001) plane of ice Ih.  相似文献   

18.
Time-of-flight (TOF) spectra of photofragment H atoms from the photodissociation of water ice films at 193 nm were measured for amorphous and polycrystalline water ice films with and without dosing of hydrogen chloride at 100-145 K. The TOF spectrum is sensitive to the surface morphology of the water ice film because the origin of the H atom is the photodissociation of dimerlike water molecules attached to the ice film surfaces. Adsorption of HCl on a polycrystalline ice film was found to induce formation of disorder regions on the ice film surface at 100-140 K, while the microstructure of the ice surface stayed of polycrystalline at 145 K with adsorption of HCl. The TOF spectra of photofragment Cl atoms from the 157 nm photodissociation of neutral HCl adsorbed on water ice films at 100-140 K were measured. These results suggest partial dissolution of HCl on the ice film surface at 100-140 K.  相似文献   

19.
利用密度泛函理论(DFT)总能计算研究了Ni(110)-p2mg(2×1)-CO表面的原子结构和电子态. 计算结果表明: CO分子吸附于该表面的短桥位附近, 分子吸附能为1.753 eV, CO分子的键长dC—O为0.117 nm, 分子与表面竖直方向的夹角为20.0°, 碳原子和短桥位中点的连线与竖直方向的夹角为20.9°; 吸附的CO分子内原子间的伸缩振动频率为1876和1803 cm-1. 态密度研究结果表明吸附作用主要来自CO分子π、σ轨道与衬底d轨道间的杂化作用. CO分子σ轨道和衬底表面镍原子dxz轨道杂化形成的表面电子态主要位于费米能以下-10.4 至-8.8 eV和-7.4至-5.1 eV 范围内. σ和dxz轨道间的杂化作用可能是形成p2mg表面对称性的重要因素之一.  相似文献   

20.
用离子散射谱(ISS)、俄歇电子能谱(AES)及低能电子衍射(LEED)技术对Ni3Ti(0001)表面结构与组成进行考察后,主要采用高分辨电子能量损失谱(HREELS),以CO为探针分子,研究了清洁及部分氧化的Ni3Ti(0001)表面上Ni,Ti间的相互作用及对CO吸附态的影响.结果表明:(1)在最表层几乎完全为Ni的Ni3Ti(0001)清洁规整表面上,CO没有发生解离;(2)次表层Ti原子与最表层Ni原子间的电子相互作用,使初始吸附的CO伸缩振动与Ni(111)相比向低频位移约60cm-1;(3)适量CO暴露后,CO氧端与近邻Ti原子的成键作用产生了一种新的Nix-C-O-Tiy物种.Ni3Ti(0001)表面部分氧化后,上述(2)和(3)作用消失  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号