首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
对外掺杂碱土金属Mg的B40硼笼的储氢性能进行了密度泛函理论研究. 结果表明, B40笼含有2个六元环与4个七元环. 多个Mg原子对B40笼进行外掺杂时不会发生成簇现象, 有利于进一步储氢. Mg原子外掺杂的B40笼对H2分子的平均吸附能介于物理吸附与化学吸附之间(0.1~0.8 eV). 体系的储氢密度达到7.60%(质量分数). 储氢结构能在常温常压下释放H2分子, 因此, Mg原子外掺杂的B40笼比Mg合金具有更好的储氢性能.  相似文献   

2.
使用密度泛函理论中的广义梯度近似对内掺Sc原子的graphene-Sc-graphene扩展三明治结构的几何结构、电子结构和储氢性能进行计算研究. 计算发现: Sc原子位于单层石墨烯中六元环上方的结构具有较大的结合能, 但小于固体Sc的内聚能实验值(3.90 eV), 然而, 当单个Sc原子或者多个Sc原子在双层石墨烯中间与底层相距2 Å时, Sc原子与基底的结合能增加到5 eV以上, 远远大于固体Sc的内聚能实验值(3.90 eV), 因此相邻的Sc原子可以有效避免成簇. 由此可见, 三明治结构的形成明显增加了Sc原子与基底的结合强度, 该结构可以进一步储氢来满足18电子规则而更加稳定, 从而成为理想的新型储氢纳米材料. 扩展三明治结构graphene-Sc-graphene的(2×3)单元中每个Sc原子最多可以吸附2个H2分子, 对H2的平均吸附能分别为0.67 eV和0.54 eV, 介于物理吸附和化学吸附(0.1~0.8 eV)之间, 因此该体系可以实现常温常压下对H2的可逆吸附. 由储氢机制分析可知: 扩展三明治结构graphene-Sc-graphene主要通过Dewar-Kubas作用进行储氢, 形成了π-δ-π型的电子结构.  相似文献   

3.
3d过渡金属修饰是改善石墨烯储氢性能的最有效途径, 但仍存在金属团聚和H2解离导致难以脱附的问题. 提出了B/N掺杂单缺陷石墨烯(BMG/NMG)的策略来避免以上两个问题. 密度泛函理论计算结果表明, N掺杂可以使Sc, Ti, V与石墨烯的结合能提高3~4倍, B掺杂可以将Sc与石墨烯的结合能提高3倍. Sc/BMG和Sc/NMG吸附的第一个H2不会解离. Sc/BMG中Sc吸附5个H2, 平均氢分子结合能为-0.18~-0.43 eV, 并且可以通过在同侧锚定多个Sc原子形成Sc/C3B2五元环增加H2吸附位点. Sc/NMG中每个Sc吸附6个H2, 平均氢分子结合能为-0.17~-0.29 eV, 还可以通过在异侧修饰形成Sc/N3/Sc单元进一步提高储氢能力. 研究结果将为设计基于3d过渡金属修饰碳材料的储氢材料提供理论基础.  相似文献   

4.
基于密度泛函理论,采用广义梯度近似(GGA)分析了H2分子吸附在氧化硅团簇上的几何结构、电子性质以及吸附能.结果发现:H2分子与Si3O4团簇相互作用时,H2分子被分解,游离的H原子优先吸附在末端Si原子上,表明Si3O4团簇体系对氢气的存储主要依赖于末端存在悬挂键的Si原子,接着H2分子才以分子的形式以较小吸附能吸附在Si3O4H4团簇上.氢气分子主要引起与其邻近的原子电荷的重新分布.该团簇体系的红外、拉曼光谱图有效地鉴定了H2分子的吸附状态,为理论上确定团簇的稳定结构和实验上对观测结果的分析提供有力的途径.  相似文献   

5.
采用第一性原理方法,通过计算表面能确定Mg3N2(011)为最稳定的吸附表面,分别研究了H2分子在Mg3N2(011)三种终止表面的吸附性质.研究发现H2分子平行表面放置更有利于吸附,表面能最低的终止表面Model Ⅱ上吸附H2分子最稳定,主要存在三种化学吸附方式:第一种吸附方式,H2分子解离成2个H原子分别吸附在N原子上形成双NH基,这是最佳吸附方式;此时H2分子与Mg3N2表面间主要是H原子的1s轨道和N原子的2s、2p轨道发生作用,N-H之间为典型的共价键.第二种吸附方式中H2分子部分解离,两个H原子吸附在同一个N原子上形成NH2基.第三种吸附方式中H2分子解离成两个H原子,一个H原子和表面N原子作用形成NH基,另一个H原子和表面Mg原子作用形成MgH结构.三种吸附方式不存在竞争关系,形成双NH基的吸附方式反应能垒最低,最容易发生.除此之外H2还能以分子的形式吸附在晶体表面,形成物理吸附.  相似文献   

6.
孙成珍  白博峰 《物理化学学报》2018,34(10):1136-1143
二维石墨烯纳米孔中气体分子的选择性渗透对多孔石墨烯分离膜非常重要。本文采用分子动力学方法研究了气体分子在氮氢修饰石墨烯纳米孔中的渗透特性,从分子的大小和结构、纳米孔的构型以及分子与石墨烯之间的作用强度等角度阐明了分子出现选择性渗透的原因。结果表明,不同分子的渗透率不同,即H2O>H2S>CO2>N2>CH4。渗透率跟分子的质量和直径以及分子在石墨烯表面上的吸附密度有关;根据气体分子动理学理论,渗透率跟分子质量成反比关系;而分子在石墨烯表面上的高吸附密度对渗透起促进作用。对于H2O和CH4分子,分子直径起主导作用;H2O分子直径最小,其渗透率最大;同理,CH4分子的渗透率最小。对于H2S和CO2分子,H2S分子的直径较大,但其与石墨烯之间的作用强度较大(吸附密度较高),导致渗透率较高;对于CO2和N2分子,CO2分子的直径较小,并且与石墨烯之间的作用强度较大,渗透率较高。同时发现,分子在纳米孔中的渗透使得其在石墨烯表面的密度分布极不均匀。纳米孔左右两侧的功能化氮原子使CH4分子容易从孔两侧区域穿过,而其它分子由于直径较小在纳米孔中心区域穿过的概率最大。分子与石墨烯之间的作用越强,导致分子在石墨烯表面区域内停留的时间越长,最终使其在渗透纳米孔的过程中所经历的时间越长。本文所采用的氮氢修饰石墨烯纳米孔中,分子渗透速率达到~10-3 mol·s-1·m-2·Pa-1,并且其它分子相对于CH4分子的选择性也很高,说明基于该类型纳米孔的多孔石墨烯分离膜在天然气处理等工业气体分离领域具有很好的应用前景。  相似文献   

7.
利用密度泛函理论研究了Pt(111)面及Pt14团簇对肉桂醛(CAL)的吸附作用和不完全加氢的反应机理。分析吸附能结果表明,肉桂醛分子以C=O与C=C键协同吸附在Pt(111)面上的六角密积(Hcp)位最稳定,以C=C键吸附在Pt14团簇上最稳定,且在Pt14团簇上的吸附作用较Pt(111)面更强。由过渡态搜索并计算得到的反应能垒及反应热可知,肉桂醛在Pt(111)面和Pt14团簇上均较容易对C=O键加氢得到肉桂醇(COL)。其中,优先加氢O原子为最佳反应路径,即Pt无论是平板还是团簇对肉桂醛加氢均有较好的选择性。同时发现,肉桂醛分子在Pt(111)面的加氢反应能垒较Pt14团簇上更低,即Pt的催化活性及对肉桂醛加氢产物选择性与其结构密切相关,其中,Pt(111)面对生成肉桂醇更加有利。  相似文献   

8.
基于密度泛函理论的第一性原理从头计算方法,建立了Cl2和O2在TiC(100)表面的共吸附模型.通过分析吸附能、电荷密度和偏态密度(PDOS)等参数,研究了Cl2和O2在TiC(100)表面的反应机理,发现解离后的Cl原子和O原子与TiC(100)表面的原子均成键,从而破坏了Ti—C键.Cl2分子在吸附过程中充当电子的受体,得到与之成键的Ti原子贡献的电子,O2分子在吸附过程中也充当电子的受体,得到C原子贡献的电子.TiC(100)表面在吸附分子后,Ti—C成键轨道上电子占据数变少,反键轨道上电子占据数增多,Ti原子与C原子之间的成键作用减弱.同时,Ti3d与Cl3s,Cl3p发生轨道重叠杂化作用,O2p轨道和C2p轨道存在较强的共振峰,Cl原子和O原子与TiC表面相互作用强烈.  相似文献   

9.
刁智俊  赵跃民  陈博  段晨龙 《化学学报》2012,70(19):2037-2044
采用ReaxFF动力学方法模拟了非交联固化环氧树脂在不同温度和升温速率下的热解特性. 结果表明, 含N和含O桥键的断裂是热解的引发反应. 观察到H2O的4种主要的生成途径, 而这些反应途径都涉及到含羟基的前驱体. 当反应温度较低时, H2O为热解的主要产物. 而在高温条件下, 热解的主要产物为H2, 它主要为分子内/分子间脱氢反应和氢自由基的夺氢反应的产物; 高温同时促进了含石墨烯结构且分子量较大的碳团簇的形成. 除此之外, 还观察到了CH4, HCN, NH3和CO等小分子产物. 本文用ReaxFF动力学方法模拟所得的气体产物以及含类似石墨烯结构的碳团簇与实际实验结果一致, 说明ReaxFF动力学方法能为从分子水平上研究有机物高温热解反应提供了一种有效的途径.  相似文献   

10.
用密度泛函理论结合全电子自旋极化方法构建并优化出了最稳定的(Al16Ti) (n=0-3)离子团簇, 研究了其几何结构、稳定性和电子结构. 同时研究了水分子在(Al16Ti) (n=0-3)离子团簇表面的吸附结构和吸附能. 研究结果与纯(Al17Ti) (n=0-3)离子团簇的电子结构及其与H2O分子的相互作用规律做了对比. 通过电子最高占据轨道和最低空轨道的空间分布, 发现大部分的活性电子占据在Ti 原子位置, 少量电子根据曲率从大到小的顺序依次占据. 通过分析最稳定的(Al16TiH2O) (n=0-3)吸附化合物的几何结构可以看出, 水分子都倾向于吸附在Ti原子上, 并且为亲氧吸附. 在所有的吸附化合物中, (Al16TiH2O)+具有最短的平均O―H键长, 比孤立H2O分子中的O―H键约长0.0003 nm, 然后随着电子数的增加或减少, O―H键都会进一步被拉长. 研究结果表明, Al 团簇离子中Ti 原子的掺杂可以有效提高H2O分子的解离效率. 另外, 在金属团簇的几何结构效应与杂质效应共同出现时, 杂质的影响占据了主导地位.  相似文献   

11.
第一性原理计算研究发现由于二维TiC单原子层具有高的比表面积与大量的暴露在表面的Ti原子,其是一种非常有潜力的储氢材料.计算结果显示H2可以在二维TiC单原子层表面进行物理吸附与化学吸附.其中化学吸附能为每个氢分子0.36 eV,物理吸附能是每个氢分子0.09 eV.覆盖度为1和1/4层(ML)时,H2分子在二维TiC单原子层表面的离解势垒分别为1.12和0.33 eV.因此,除了物理吸附与化学吸附,TiC表面还存在H单原子吸附.最大的H2储存率可以达到7.69%(质量分数).其中,离解的H原子、化学吸附的H2、物理吸附的H2的储存率分别为1.54%、3.07%、3.07%.符合Kubas吸附特征的储存率为3.07%.化学吸附能随覆盖度的变化非常小,这有利于H2分子的吸附与释放.  相似文献   

12.
基于PAF-301分子模型通过Li掺杂或B取代等模式设计了几种新型多孔芳香骨架(PAFs)材料,采用量子力学和分子力学方法对新材料的储氢性能进行研究.由量子力学计算得到了不同分子片段与H2之间的结合能,并结合DDEC方法计算了各分子片段的原子电荷分布.利用巨正则蒙特卡洛(GCMC)模拟方法计算了77和298 K下H2在不同PAFs材料中的吸附平衡性质.结果表明,H2直接与苯环的结合能较低,但掺杂Li原子能够提高H2与六元环的结合能,同时Li原子体现出较高的正电性质,B原子取代苯环中的两个C原子后,使得原有C原子电负性增强;77 K下PAF-301Li具有最高的储氢性能,而PAF-C4B2H4-Li2-Si和PAF-C4B2H4-Li2-Ge体现出较好的常温储氢性能,各种材料的常温储氢性能远低于其低温储氢性能.通过77 K下H2在PAFs材料中的等位能面分布和吸附平衡质心密度分布对H2在PAFs材料中的优先吸附位置进行分析,发现在PAF-301和PAF-301Li骨架中,由于中心能量较低的等位能区域范围较宽,H2在其中存在四个明显的吸附高密度分布区域,而其它三种PAFs晶胞中心能量较低的等位能区域范围较窄,使得H2在其中只存在两个明显的吸附高密度分布区域.  相似文献   

13.
The use of semiconductor photocatalysts (CdS, g-C3N4, TiO2, etc.) to generate hydrogen (H2) is a prospective strategy that can convert solar energy into hydrogen energy, thereby meeting future energy demands. Among the numerous photocatalysts, TiO2 has attracted significant attention because of its suitable reduction potential and excellent chemical stability. However, the photoexcited electrons and holes of TiO2 are easily quenched, leading to limited photocatalytic performance. Furthermore, graphene has been used as an effective electron cocatalyst in the accelerated transport of photoinduced electrons to enhance the H2-production performance of TiO2, owing to its excellent conductivity and high charge carrier mobility. For an efficient graphene-based photocatalyst, the rapid transfer of photogenerated electrons is extremely important along with an effectual interfacial H2-production reaction on the graphene surface. Therefore, it is necessary to further optimize the graphene microstructures (functionalized graphene) to improve the H2-production performance of graphene-based TiO2 photocatalysts. The introduction of H2-evolution active sites onto the graphene surface is an effective strategy for the functionalization of graphene. Compared with the noncovalent functionalization of graphene (such as loading Pt, MoSx, and CoSx on the graphene surface), its covalent functionalization can provide a strong interaction between graphene and organic molecules in the form of H2-evolution active sites that are produced by chemical reactions. In this study, carboxyl-functionalized graphene (rGO-COOH) was successfully modified via ring-opening and esterification reactions on the TiO2 surface by using an ultrasound-assisted self-assembly method to prepare a high-activity TiO2/rGO-COOH photocatalyst. The Fourier transform infrared (FTIR) spectra, X-ray photoelectron spectroscopy (XPS), and thermogravimetric (TG) curves revealed the successful covalent functionalization of GO to rGO-COOH by significantly enhanced ―COOH groups in FTIR and increased peak area of carboxyl groups in XPS. A series of characterizations, including X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), XPS, and UV-Vis adsorption spectra, were performed to demonstrate the successful synthesis of TiO2/rGO-COOH photocatalysts. The experimental data for the hydrogen-evolution rate showed that the TiO2/rGO-COOH displayed an extremely high hydrogen-generation activity (254.2 μmol∙h−1∙g−1), which was 2.06- and 4.48-fold higher than those of TiO2/GO and TiO2, respectively. The enhanced photocatalytic activity of TiO2/rGO-COOH is ascribed to the carboxyl groups of carboxyl-functionalized graphene, which act as effective hydrogen-generation active sites and enrich hydrogen ions owing to their excellent nucleophilicity that facilitates the interfacial hydrogen production reaction of TiO2. This study provides novel insights into the development of high-activity graphene-supported photocatalysts in the hydrogen-generation field.   相似文献   

14.
In-depth understanding of the mechanisms of hydrogen sulfide (H2S) adsorption on catalysts during desulfurization from industrial waste gas streams is important for developing effective catalysts to be used in the decomposition of H2S. In this work, the dissociation behavior of H2S adsorbed on a single-atom catalyst (Ti or V-decorated Ti2CO2 surface) was investigated by performing density functional theory (DFT) calculations. The corresponding diffusion behavior revealed that Ti or V atoms could be dispersed on the Ti2CO2 monolayer, without aggregation in the form of single atoms. In addition, analyses of the partial density of states (PDOS), Hirshfeld charges, and electron density difference indicated that the decorated Ti or V atoms led to charge redistribution on the Ti2CO2 surface and significantly improved the interaction between the H2S gas molecules and Ti2CO2, thereby enhancing the catalytic activity of V/Ti2CO2. In order to gain a deeper understanding of the mechanism of H2S decomposition (H2S → HS* + H* → H2 + S*), a comparative analysis of the results for the decomposition of H2S on the Ti/Ti2CO2 and V/Ti2CO2 surfaces was carried out. The catalytic dissociation behavior of H2S is explained as follows: once H2S is adsorbed on the V/Ti2CO2 or Ti/Ti2CO2 surface, it spontaneously dissociates into HS*/H* without any energy barrier on the catalyst surface. Subsequently, the V atoms would not only promote the cleavage of the H-S bond, but also play a major role in the formation of S atoms. Moreover, the rate-limiting step for the entire process proceeded on the Ti/Ti2CO2 surface with an energy barrier of 0.86 eV, while that for V/Ti2CO2 was 0.28 eV, indicating that the H2S molecules easily dissociated into S and H2 on the V/Ti2CO2 surface at room temperature. The reaction time for H2S decomposition on the V/Ti2CO2 surface at 500 K was 65.79 ns, which was almost two orders of magnitude higher than that at room temperature. Thus, the decomposition of H2S on the V-doped Ti2CO2 surface is associated very fast kinetics. Furthermore, the S atoms can form elemental sulfur with aggregation on the V/Ti2CO2 surface to promote recycling reactions. Compared with previously reported catalytic systems, the single-atom catalyst (SAC) V/Ti2CO2 catalyst has greater application prospects in terms of sustainable economy or removal efficiency for H2S treatment. Our results suggest that V-doped Ti2CO2 is an excellent candidate for a highly effective non-noble metal catalyst applicable to H2S decomposition.   相似文献   

15.
Two-dimensional graphene nanopores have proved to be a very effective molecular sieve with ultra-high molecular permeance due to the atomic thickness of graphene sheets. The mechanism of graphene nanopores for molecular sieving is generally the size-sieving effect of different molecules. However, high-selective molecular separation is difficult to realize based only on the size-sieving effect. Therefore, graphene nanopore-based membranes usually present high permeance but a moderate selectivity, such that the separation performance cannot far exceed those of traditional separation membranes. In this study, the effects of charges on graphene surfaces on the selective permeation of CO2/N2 mixtures through a graphene nanopore is studied using molecular dynamics simulations; its purpose to realize electrostatic effect-based selective molecular permeation through graphene nanopores and find a promising method to improve the selectivity of molecular separation. The simulation results show that graphene nanopores with negative charges have higher CO2 permeance and lower N2 permeance and, thus, present a high selectivity for the separation of the CO2/N2 mixtures. The graphene nanopore with positive charges, however, does not improve the selectivity. The electrostatic effect-based selectivity of graphene nanopores is related to the different molecular adsorption abilities on the graphene surface with charges. For negative charges, the adsorption ability of CO2 molecules increases and the number of permeated molecules via surface mechanism increases and the experience time during the permeation process also increases; ultimately the CO2 permeance increases with increasing the charge density. For the molecules permeated through the surface mechanism, they are firstly adsorbed onto the graphene surface and then diffuse to the pore region for the ultimate permeation; thus, their experience time is longer than that of the molecules permeated through a direct mechanism. Therefore, a longer experience time means a more significant contribution of the surface flux to the total flux. At high surface charge densities, the contribution of surface flux is dominated and thus the experience time is longer. For CO2 molecules, the permeation rates increase with increasing the surface charge density. Namely, a higher experience time corresponds to a higher permeation rate for CO2 molecules. A decrease of N2 permeance with increasing the charge density is correlated to the increasing CO2 permeance via the inhibition effects of non-permeating components on the permeation of permeating components. For positive charges, the adsorption abilities of CO2 and N2 molecules have no obvious variation with the charge density and their permeance is constant; therefore, the graphene nanopore still has no electrostatic effect-based selectivity.  相似文献   

16.
Nanoparticles of precious metals play an important role in many heterogeneous catalytic reactions due to their excellent catalytic performance. As an idealized model, gas phase metal clusters have been extensively utilized to understand catalytic mechanisms at a molecular level. Here we provide an overview of our recent studies on H2 dissociative chemisorption on nickel family clusters. The structure evolution and the stability of the metal clusters were first compared. H2 dissociation on the clusters was then carefully addressed to understand the capability of metal clusters to break the H-H bond. Two key parameters, the dissociative chemisorption energy (ΔECE) and the H sequential desorption energy (ΔEDE), were employed to characterize the catalytic activity of metal clusters. Our results show that both ΔECE and ΔEDE decline significantly as the H coverage increases. Since the catalyst is in general covered entirely by H atoms and H2 molecules in a typical hydrogenation process, and maintained at a pre-determined pressure of H2 gas, we can rationally use the calculated ΔECE and ΔEDE values at full H saturation to address the activity of metal clusters. Our results suggest that at full H coverage, each Pt atom is essentially capable of adsorbing 4 H atoms, while each Ni or Pd atom can only accommodate 2 H atoms. Considering the similar values of H desorption energies on Pt and Pd clusters, the higher average H capacity per Pt atom could probably lead to a faster reaction rate because more active H atoms are produced on the Pt catalyst particles in the hydrogenation process. Finally, the charge sensitivity of the key catalytic properties of Pt clusters for hydrogenation was systematically evaluated. The results show that the dissociation of H2 and H desorption are strongly correlated to the charge state of the Pt clusters at low H coverage. However, at high H-capacities, both ΔECE and ΔEDE fall into a narrow range, suggesting that the charge can be readily dispersed and that the Pt-H bonds average the interaction between clusters and H atoms. As a result, the H-capacities on charged clusters were found to be similar as the cluster size increased; in case of sufficiently large clusters, the reactivity of a fully saturated cluster was no longer sensitive to its charge state.  相似文献   

17.
Density-functional calculations of the adsorption of molecular hydrogen on a planar graphene layer and on the external surface of a (4,4) carbon nanotube, undoped and doped with lithium, have been carried out. Hydrogen molecules are physisorbed on pure graphene and on the nanotube with binding energies about 80-90 meV/molecule. However, the binding energies increase to 160-180 meV/molecule for many adsorption configurations of the molecule near a Li atom in the doped systems. A charge-density analysis shows that the origin of the increase in binding energy is the electronic charge transfer from the Li atom to graphene and the nanotube. The results support and explain qualitatively the enhancement of the hydrogen storage capacity observed in some experiments of hydrogen adsorption on carbon nanotubes doped with alkali atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号