首页 | 本学科首页   官方微博 | 高级检索  
     检索      

新型掺杂多孔芳香骨架材料的储氢性能模拟
引用本文:吴选军,赵鹏,方继敏,王杰,刘保顺,蔡卫权.新型掺杂多孔芳香骨架材料的储氢性能模拟[J].物理化学学报,2014,30(11):2043-2054.
作者姓名:吴选军  赵鹏  方继敏  王杰  刘保顺  蔡卫权
作者单位:1. School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, P. R. China; 2. College of Natural Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China; 3. State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, P. R. China
基金项目:湖北省自然科学基金(2013CFB344);国家自然科学基金(51272201);教育部新世纪优秀人才支持计划(NCET-13-0942);武汉理工大学中央高校基本科研业务费专项资金(2013-Ⅱ-014,201410497039)资助项目~~
摘    要:基于PAF-301分子模型通过Li掺杂或B取代等模式设计了几种新型多孔芳香骨架(PAFs)材料,采用量子力学和分子力学方法对新材料的储氢性能进行研究.由量子力学计算得到了不同分子片段与H2之间的结合能,并结合DDEC方法计算了各分子片段的原子电荷分布.利用巨正则蒙特卡洛(GCMC)模拟方法计算了77和298 K下H2在不同PAFs材料中的吸附平衡性质.结果表明,H2直接与苯环的结合能较低,但掺杂Li原子能够提高H2与六元环的结合能,同时Li原子体现出较高的正电性质,B原子取代苯环中的两个C原子后,使得原有C原子电负性增强;77 K下PAF-301Li具有最高的储氢性能,而PAF-C4B2H4-Li2-Si和PAF-C4B2H4-Li2-Ge体现出较好的常温储氢性能,各种材料的常温储氢性能远低于其低温储氢性能.通过77 K下H2在PAFs材料中的等位能面分布和吸附平衡质心密度分布对H2在PAFs材料中的优先吸附位置进行分析,发现在PAF-301和PAF-301Li骨架中,由于中心能量较低的等位能区域范围较宽,H2在其中存在四个明显的吸附高密度分布区域,而其它三种PAFs晶胞中心能量较低的等位能区域范围较窄,使得H2在其中只存在两个明显的吸附高密度分布区域.

关 键 词:多孔芳香骨架材料  掺杂  储氢  原子电荷  分子模拟  
收稿时间:2014-07-31

Simulation on the Hydrogen Storage Properties of New Doping Porous Aromatic Frameworks
WU Xuan-Jun;ZHAO Peng;FANG Ji-Min;WANG Jie;LIU Bao-Shun;CAI Wei-Quan.Simulation on the Hydrogen Storage Properties of New Doping Porous Aromatic Frameworks[J].Acta Physico-Chimica Sinica,2014,30(11):2043-2054.
Authors:WU Xuan-Jun;ZHAO Peng;FANG Ji-Min;WANG Jie;LIU Bao-Shun;CAI Wei-Quan
Institution:1. School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, P. R. China; 2. College of Natural Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China; 3. State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, P. R. China
Abstract:Several new porous aromatic frameworks (PAFs) were designed by Li doping or B substitution based on the PAF-301 molecular model. The hydrogen storage capacities of these materials were investigated using quantum mechanics and molecular mechanics methods. First, the binding energies between H2 and the different molecular fragments were calculated using quantum mechanics, and the atomic charge distributions of the molecular fragments were calculated by the density-derived electrostatic and chemical charge (DDEC) method. Then, the adsorption equilibrium properties of H2 on the different PAFs were calculated at 77 and 298 K using grand canonical Monte Carlo (GCMC) simulations. The results indicate that the binding energy between H2 and benzene without Li doping is poor, while the binding energies between H2 and Li-doped six-member rings are improved. Li atoms doped into the benzene ring result in higher positive charges, and the electronegativity of the original carbon atoms in the benzene ring increase after its two carbon atoms are replaced with two boron atoms. Among these new materials, PAF-301Li has the highest hydrogen storage capacity at 77 K, while PAF-C4B2H4-Li2-Si and PAF-C4B2H4-Li2-Ge have better hydrogen storage capacities at room temperature than at 77 K. However, the hydrogen storage capacities of these various materials at room temperature are far below the capacities at cryogenic temperature. The preferential adsorption sites for H2 on the PAFs at 77 K were analyzed through the potential energy surfaces and mass center density distribution of the adsorption equilibrium. It was found that there are four obvious high-density adsorption regions in the frameworks of PAF-301 and PAF-301Li because of their wide low-energy regions in the crystal center, while there are only two distinct high-density adsorption regions in the other three PAFs because of their narrow low-energy regions in the unit cell center.
Keywords:Porous aromatic framework  Doping  Hydrogen storage  Atomic charge  Molecular simulation  
本文献已被 CNKI 等数据库收录!
点击此处可从《物理化学学报》浏览原始摘要信息
点击此处可从《物理化学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号