首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
双燃料燃烧是一种实现内燃机高效清洁燃烧的新型燃烧方式,国内外对燃用双燃料的内燃机性能和排放开展了较为广泛的研究,但对双燃料缸内燃烧过程的认识有待深入.本文搭建了一套光学发动机缸内燃烧中间产物激光测试系统,该系统可以实现甲醛和羟基(OH)的二维同时定性测量.为了验证该激光诊断系统的可行性,首先在甲烷层流预混火焰上对甲醛和羟基的激光诱导荧光(LIF)光谱和图像进行采集,确定甲醛和OH激发波长分别为355和282.95 nm.随后在光学发动机上对双燃料缸内燃烧过程中甲醛和羟基进行了非同时测量,分析了双燃料燃烧双阶段放热过程中甲醛和OH分布区域.光学发动机转速为1200 r·min-1,循环当量总油量为30 mg正庚烷.进气冲程初期气道喷射异辛烷,上止点前10°曲轴转角在缸内直喷9 mg正庚烷.激光诱导荧光成像表明,甲醛生成于低温放热阶段,主要分布在缸内直喷燃油油束附近区域,之后甲醛充满整个燃烧室空间;高温放热过程中燃烧室壁面附近区域的甲醛首先消耗,伴随甲醛消耗OH首先出现于燃烧室边缘,高温放热阶段过后,甲醛基本消失, OH逐渐充满整个燃烧室.最后对双燃料缸内燃烧过程甲醛和OH同时测量发现,甲醛消耗伴随OH的产生,甲醛和OH分布区域总体而言在空间上是分开存在的,但在局部区域甲醛和OH可能并存.  相似文献   

2.
提出了一套系统化多级机理简化策略,包含基于误差传播的直接关系图法、峰值浓度分析法、线性同分异构体集总法、主组分分析法、温度敏感性分析和产率分析法,并将其应用于汽油四组分表征燃料详细反应机理的简化,构建了适用于HCCI发动机燃烧边界下的简化机理模型,包含149个物种、414个反应。通过与激波管、快速压缩机、增压HCCI发动机实验数据的对比验证表明,新机理可以准确地预测较宽范围条件下的着火滞燃期,在HCCI发动机的单区模型计算中,该机理对缸内燃烧和排放的预测结果是令人满意的。放热率分析表明, R + O2反应是控制中间温度区放热的关键基元反应,在高压低温下,异辛烷的放热起到决定性作用。添加2-戊烯之后,使得四组分模型相较于三组分模型更为准确,尤其是对于第一阶段着火滞燃期有显著影响,为进一步探索调和燃料组分比例控制HCCI燃烧提供了一条新思路。  相似文献   

3.
张帆  尧命发 《物理化学学报》2016,32(8):1941-1949
采用三维直接数值模拟方法研究了一个类似于部分预混燃烧(PPC)发动机条件下高辛烷值燃料PRF70的着火过程。文章采用了简化的PRF化学动力学机理,包含33个组分和38步基元反应。计算中根据发动机的几何尺寸和真实运行工况加入了气缸内压缩/膨胀的效果,并考虑了燃料的两次喷射,其中第一次喷射形成了较均匀的混合气,第二次燃料喷射增加了混合物分层。研究发现,PPC的燃烧过程非常复杂,是均质压燃、预混燃烧和扩散燃烧三种主要燃烧模式的结合。在两次燃料喷射之间的区域为近化学计量比燃烧,是氮氧化物的生成区;而在化学计量比(φ)大于2的区域,混合不充分聚集了大量未燃碳氢和CO。文章使用Marching cube算法捕捉了三维火焰锋面随时间的变化。最后,使用反应锋面上高斯曲率(kg)与平均曲率(km)的联合概率密度函数(PDF)以及平均曲率随时间变化的概率密度函数,揭示了球形火焰锋面和马鞍形火焰锋面的存在,前者占主要地位,并且随着燃烧的进行,负曲率增加,主要是因为中心的燃料浓区在逐渐消耗。  相似文献   

4.
提出了一个适用于均质压燃着火(HCCI)燃烧过程的甲苯参比燃料简化机理模型, 包含70种组分和196个反应. 低温简化机理选用Tanaka等人构建的基础燃料氧化机理中的部分反应, 加入本文构建的甲苯简化子机理中. 高温简化机理主要利用到Patel等人的研究成果, 同时加入关键反应[H+O2+M=O+OH+M]. 简化机理分别对替代混合物中的单组分、双组分、三组分物质进行了着火延迟期的预测计算, 预测结果与实验结果较为吻合. 与HCCI发动机实验的验证表明, 对于各工况下甲苯参比燃料的缸内计算, 该机理的预测能力是令人满意的. 由此可知, 本文提出的TRF简化机理在HCCI燃烧方面的预测性能是可靠的. HCCI发动机工况下最大放热率时刻的敏感性分析表明, 随着压力的升高, C6H5与O2的反应变得更加重要; 甲醛是非常重要的中间产物, 是不应当被忽略的.  相似文献   

5.
利用管式炉反应器在550-1 000℃对长治贫煤和脱矿物质煤分别在空气和O_2/CO_2气氛进行了燃烧实验。利用XRF、XRD等分析手段,对煤样的基本性能进行了分析表征,并采用热分析仪(TG-DTG)以及傅里叶红外气体分析仪(AntarisIGS)对贫煤燃烧过程中的燃烧特性和SO_2和NO_x释放规律进行了研究。结果表明,与原煤相比,脱矿物质煤的着火温度和燃烬温度有所降低;O_2/CO_2气氛下,原煤和脱矿物质煤的着火温度和燃烬温度都升高,说明当O_2浓度为20%时,空气气氛比O_2/CO_2气氛更易于着火和燃烬。此外,与长治原煤相比,脱矿物质煤在相同条件下燃烧时SO_2的释放量明显提高,而NO_x的释放量却有所降低。O_2/CO_2气氛下原煤燃烧时SO_2浓度比空气气氛下的要高,而脱矿物质煤燃烧时释放的SO_2浓度明显比空气气氛下的低;O_2/CO_2气氛下原煤和脱矿物质煤燃烧时释放的NOx浓度比空气气氛下燃烧时释放的NO_x浓度要低。  相似文献   

6.
建立了一个适用于由正庚烷、异辛烷、甲苯和二异丁烯组成的汽油替代燃料均质压燃着火(HCCI)燃烧过程的简化机理模型, 包含103 种组分199 个反应. 二异丁烯主要通过燃料的脱氧反应消耗掉, 生成三种同分异构体, JC8H15-A、JC8H15-B和JC8H15-D; 燃料的分解反应也是二异丁烯的另外一条主要消耗路径, 生成两种重要的C4产物, TC4H9和IC4H7. 这些产物是CH2O的主要来源. 甲苯掺比燃料(TRF)机理主要是基于Andrae 等建立的TRF半详细机理, 甲苯和二异丁烯子机理是通过路径分析和敏感性分析得到. 简化机理能够很好地模拟激波管里的着火延迟和HCCI发动机实验, 由此可知, 本文提出的简化机理用来模拟HCCI燃烧是可靠的.  相似文献   

7.
采用环境友好的固相法制备了高活性甲苯氧化Co3O4催化剂,通过与传统沉淀法和柠檬酸络合-燃烧法制备的Co3O4催化剂比较,固相合成法制备的Co3O4-SR催化剂在催化甲苯完全氧化反应中表现了很好的活性和稳定性,甲苯转化率为95%时的反应温度T95为230℃,反应60 h活性没有下降.通过XRD,Raman,FT-IR,XPS等手段对Co3O4催化剂的结构和表面性能进行了表征,结果表明固相法制备的Co3O4催化剂具有较多的表面缺陷,催化剂表面Co—O键较弱,具有较强的活化氧的能力,表现出突出的甲苯完全氧化的催化活性.  相似文献   

8.
为了分析废气再循环中NO对HCCI燃烧的影响,本文构建了一个新的NO与异辛烷相互作用的化学动力学机理,包括167种组分和835个反应,其中异辛烷分支反应包括112种组分和467个反应。NO分支的子机理是在Anderlohr等人对NO与异辛烷详细机理研究的基础上根据路径分析而得到的。新IC8H18-NO机理的验证分为:IC8H18分支机理验证了在激波管中温度范围为855-1269 K,压力范围为2-6 MPa,化学计量比为0.5和1.0条件下的着火延迟时间; IC8H18-NO机理验证了在HCCI发动机中NO添加浓度为0-500 × 10-6(体积分数),同时也发现不同的NO添加浓度对IC8H18的HCCI燃烧的影响有所不同。因此,本文利用CHEMKINPRO软件中的零维单区化学动力学模型,模拟了在不同NO浓度下NO对异辛烷燃烧影响。通过敏感性分析和产率分析,得出了NO添加后对异辛烷燃烧影响的关键性反应为R476。在IC8H18燃烧初期通过R476产生活性基OH,从而体现对燃烧的促进作用。但是在NO添加浓度较大时,由于NO浓度较大结合活性基(如OH)的能力增强,进而NO对燃烧的促进作用被削弱。  相似文献   

9.
为了分析废气再循环中NO对HCCI燃烧的影响,本文构建了一个新的NO与异辛烷相互作用的化学动力学机理,包括167种组分和835个反应,其中异辛烷分支反应包括112种组分和467个反应。NO分支的子机理是在Anderlohr等人对NO与异辛烷详细机理研究的基础上根据路径分析而得到的。新IC_8H_(18)-NO机理的验证分为:IC_8H_(18)-NO分支机理验证了在激波管中温度范围为855-1269 K,压力范围为2-6 MPa,化学计量比为0.5和1.0条件下的着火延迟时间;IC_8H_(18)-NO机理验证了在HCCI发动机中NO添加浓度为0-500×10-6(体积分数),同时也发现不同的NO添加浓度对IC_8H_(18)-NO的HCCI燃烧的影响有所不同。因此,本文利用CHEMKIN PRO软件中的零维单区化学动力学模型,模拟了在不同NO浓度下NO对异辛烷燃烧影响。通过敏感性分析和产率分析,得出了NO添加后对异辛烷燃烧影响的关键性反应为R476。在IC_8H_(18)-NO燃烧初期通过R476产生活性基OH,从而体现对燃烧的促进作用。但是在NO添加浓度较大时,由于NO浓度较大结合活性基(如OH)的能力增强,进而NO对燃烧的促进作用被削弱。  相似文献   

10.
针对催化剂活性组分脱落问题,采用载体预处理和添加硅溶胶的策略来强化活性组分负载,微波单模腔中催化燃烧甲苯以考察催化剂活性,并对牢固负载的催化剂进行表征分析。研究表明,常温下采用10%盐酸溶液对蜂窝状堇青石(CH)载体预处理、硅溶胶添加量与载体吸水量比值为0. 125条件下所制备的Cu-Mn-Ce(硅溶胶)/CH催化剂脱落率为0. 0129%,明显低于Cu-Mn-Ce/CH催化剂的0. 950%。Cu-Mn-Ce(硅溶胶)/CH催化剂具有更小的活性颗粒尺寸、更大的比表面积和更多样的活性晶体,在甲苯进气浓度1000 mg/m3、进气量0. 12 m3/h、微波功率200 W和床层温度350℃条件下,催化剂对甲苯的催化燃烧效率和矿化率分别为98. 5%和87. 9%;连续实验43 h后,催化剂活性保持稳定且活性组分脱落率低(0. 0328%)。硅溶胶的添加增强了活性组分与载体之间的相互作用力,生成的硅氧烷化学键提高了活性组分的结合牢固度。  相似文献   

11.

Rising fuel costs and efforts for reducing greenhouse gases have led researchers to propose optimized models of combustion which have high efficiency and low emissions. Reactivity controlled compression ignition (RCCI) engines are attractive due to their high efficiency and low NOx and soot emissions over a wide range of operating conditions. In this study, methane and n-heptane are used as low and high reactive fuels, respectively, to create suitable fuel stratification within the cylinder. Modeling is carried out by AVL FIRE coupled with a chemical kinetics solver to investigate the effects of fuel ratio, initial temperature and equivalence ratio on the combustion performance and emission characteristics. Methane/n-heptane ratios are varied according to the energy ratio of each fuel while total input energy and total equivalence ratios are fixed. By increasing methane energy ratio from 65% to 85% in the constant intake temperature and pressure, the mixture Octane number increases, which would lead to an increase in ignition delay up to 5 crank angles. As a result, IMEP would be enhanced and also NOx emission decreases because of lower combustion temperature. By increasing intake temperature, the maximum in-cylinder pressure, heat release rate and NOx emission would increase significantly while soot emission decreases, and also ringing intensity increases up to 10%. On the other hand, increasing intake temperature reduces volumetric efficiency; as a result, IMEP is reduced by 11%. Also by increasing equivalence ratio from 0.35 to 0.55 in a constant energy ratio, noticeable growth in the maximum amount of pressure and temperature could be achieved; consequently, NOx emission would increase significantly, IMEP increases by 43%, and ISFC decreases by 30%. The results indicate that these parameters have significant effects on the heavy-duty RCCI engine performance and emissions.

  相似文献   

12.
大分子碳氢燃料的低温化学反应及两阶段点火特性会显著影响火焰的分区及燃烧情况。本文采用数值模拟的方法探究了正庚烷/空气预混混合气在RATS燃具上的湍流火焰传播,与试验结果具有一致性。模拟使用的是44种物质,112步的正庚烷简化动力学机理。使用Open FOAM的reacting Foam求解器建立了简化模拟流道及出口的三维模型,模拟了在大气环境下,初始反应温度450–700 K、入口速度6 m·s~(-1)与10 m·s~(-1)、焰前流动滞留时间100 ms及60 ms、当量比φ=0.6的正庚烷/空气混合气湍流火焰燃烧情况。结果发现,标准化湍流燃烧速度与混合气初始温度以及流动滞留时间有关。在低温点火阶段,正庚烷氧化程度受到初始温度与速度的影响,燃料分解并在预热区中产生大量中间物质如CH_2O,继而会影响湍流火焰燃烧速度。随着初始反应温度的升高,湍流燃烧火焰逐渐由化学反应冻结区过渡到低温点火区;温度超过一定数值后,燃料不再发生低温反应,此时燃烧位于高温点火区域。  相似文献   

13.
激光诱导炽光(LII)法是一种用于测量火焰中碳烟体积分数的光学测试方法. 本文介绍了LII 的基本原理以及LII 实现定量测量的常见标定方法, 建立了一套基于双色法-激光诱导炽光法(2C-LII)的用于柴油机缸内燃烧过程碳烟体积分数定量测量的测试系统, 该测试系统采用双成像原理, 可以实现多点标定和全视场范围内的碳烟体积分数测量. 在一台工作在1200 r·min-1、喷油量21 mg的光学单缸柴油机上, 研究了60、100 和140MPa三个不同喷油压力下, 缸内燃烧过程碳烟的分布情况, 结果表明, 碳烟自发光出现在燃烧放热率峰值之后, 且随着喷油压力提高, 碳烟发光持续期缩短, 碳烟发光强度降低. 测试区域内火焰中的碳烟体积分数范围约为0-50×10-6. 不同喷油压力下, 碳烟生成初期、碳烟峰值和碳烟氧化三个阶段内平均碳烟体积分数的范围分别是: 5×10-6-9×10-6, 15×10-6-20×10-6和14×10-6-16×10-6. 喷油压力提高后火焰中的碳烟分布区域面积增大, 平均碳烟体积分数减小, 碳烟体积分数的空间分布趋于均匀.  相似文献   

14.
氧体积分数对炭黑燃烧特性影响的热天平研究   总被引:3,自引:0,他引:3  
利用热天平对天然气扩散火焰中生成的炭黑在不同氧体积分数下(21%、15%、10%和5%)的燃烧特性进行了研究,选用蜡烛炭黑、4种工业炭黑以及无烟煤焦炭作为对比。基于试验结果确定了燃烧特性参数,并分析了燃烧特性。天然气扩散火焰中生成的炭黑明显早于其他试样着火燃烧,着火温度在所有试样中最低,氧体积分数为21%下为483.0℃,比焦炭约低114℃,比蜡烛炭黑低近127.8℃。自制天然气炭黑可燃指数比焦炭低,着火后前期燃烧反应能力较弱。随着氧体积分数的降低,各试样着火温度在50℃内变化。比较各试样的燃尽特性可知自制天然气炭黑在不同燃尽率下的相对燃尽时间最长,氧体积分数为21%下完全燃尽为6.03min,比焦炭长21.3%。蜡烛炭黑相对燃尽时间也较长。随着氧体积分数降低,各试样燃尽时间都延长,尤其是自制天然气炭黑,氧体积分数从21%降到5%,相对燃尽时间延长2.97倍,氧体积分数降低明显延长其燃尽过程。  相似文献   

15.
基于不同燃料PAH特性改进的适用于多组分燃料的碳烟模型   总被引:1,自引:0,他引:1  
庞斌  解茂昭  贾明  刘耀东 《物理化学学报》2013,29(12):2523-2533
将多环芳烃(PAH)骨架模型与甲苯参比燃料(TRF)氧化模型耦合,构建了一个新的TRF-PAH骨架模型.以新的TRF-PAH骨架模型作为燃料燃烧的气相化学反应模型,基于不同分子结构的燃料氧化过程中生成PAHs和碳烟的路径也不同的研究结论,本文进一步优化了以PAHs为碳烟前驱生成物的碳烟半经验模型.通过甲苯在流动反应器、搅拌反应器和激波管中的氧化/裂解实验验证发现,新的TRF-PAH骨架模型可以相对准确地预测小分子PAHs和重要中间组分的浓度.通过对比烷烃和芳香烃氧化过程中生成苯的计算值可以发现,燃料的分子结构对PAHs的生成路径影响很大.另外,改进后的碳烟模型利用甲苯、正庚烷/甲苯及异辛烷/甲苯混合物为燃料的激波管中裂解和氧化实验验证,结果表明在较宽的工况内碳烟模拟值与实验值吻合较好.最后,将新的碳烟模型应用于KIVA程序,模拟以TRF20为燃料的柴油机碳烟排放,结果表明TRF-PAH骨架模型和碳烟模型能重现缸内燃烧和排放的特性.  相似文献   

16.
采用系统的方法自动构建链烷烃高温燃烧反应机理   总被引:3,自引:0,他引:3  
为了得到合理可靠和简化的反应机理,利用反应机理自动生成程序ReaxGen,构建了正庚烷、异辛烷、正癸烷和正十二烷的高温燃烧反应详细机理;同时分别采用物质产率分析和反应路径流量分析的方法对详细机理进行简化,得到了半详细机理和骨架机理. 在较宽的温度和压力条件下,对半详细机理和骨架机理进行了点火延时、层流火焰传播速度和重要物种浓度曲线的模拟并与实验结果比较;最后,图示说明了这些烷烃的主要高温燃烧路径,给出了点火延迟时间的敏感度分析. 结果表明:这些机理能够合理描述链烷烃的自点火特性,文中提出的结合ReaxGen程序的机理构建方法和反应路径流量分析的简化方法也可以用于其它烃类的高温燃烧机理构建.  相似文献   

17.
空气污染组分H2O和CO2对乙烯燃烧性能的影响   总被引:5,自引:0,他引:5  
超燃冲压发动机在高空工作时, 以高温高速纯净空气作氧化剂使燃料燃烧. 但在地面实验中, 高温空气往往通过燃烧加热方式获得, 从而使空气包含了H2O和CO2污染组分. 本文用电阻加热来流空气并添加污染组分的方法, 研究了燃烧室模型中乙烯的燃烧状态和壁面压力受污染组分的影响. 用化学反应动力学模拟的方法, 在绝热刚性反应器模型中用H2O和CO2取代空气中的N2, 研究了污染组分对点火延迟和燃烧温度的影响, 并从链反应机理的角度讨论了实验和动力学模拟结果.  相似文献   

18.
Two-stage ignition exists in the low-temperature combustion process of n-heptane and the first-stage ignition also shows a negative temperature coefficient(NTC) phenomenon. To study key reactions and understand chemical principles affecting the first-stage ignition of n-heptane, a lumped skeletal mechanism with 62 species is obtained based on the detailed NUIGMech1.0 mechanism using the directed relation graph method assisted by sensitivity analysis and isomer lumping. The lumped mechanism shows good performance on ignition delay time under wide conditions. The study revealed that the temperature after the first-stage ignition is higher and a larger amount of fuel is consumed at lower initial temperatures. The temperature at the first-stage ignition is relatively insensitive to the initial temperature. Further sensitivity analysis and reaction path analysis carried out based on the lumped mechanism show that the decomposition of RO2 to produce alkene and HO2is the most important reaction to inhibit the first-stage ignitions. The chain branching explosion closely related to the first-stage ignition will be terminated when the rate constant for the RO2 decomposition is larger than that of the isomerization of RO2 to produce QOOH. The NTC behavior as well as other characteristics of the first-stage ignition can be rationalized from the competition between these two reactions.  相似文献   

19.
高碳烃宽温度范围燃烧机理构建及动力学模拟   总被引:1,自引:0,他引:1  
发动机中燃料点火特性以及燃烧能量的释放对于发动机设计具有非常重要的作用,为了提高燃料的燃烧效率以及减少燃料在燃烧过程中污染物的排放,基于反应动力学机理对燃料燃烧过程的模拟就显得十分必要。因此需要更加深入的认识碳氢燃料的燃烧机理,探索其在燃烧过程中十分复杂的化学反应网络。为了发展能够适用于实际燃料多工况条件(宽温度范围、宽压力范围和不同当量比)燃烧的燃烧机理,基于碳氢燃料机理自动生成程序ReaxGen构建了正癸烷燃烧详细机理(包含1499个物种,5713步反应)和正十一烷燃烧详细机理(包含1843个物种,6993步反应)。详细机理主要由小分子核心机理和高碳烃类(C5以上)机理两部分组成。为了验证机理的合理性与可靠性,本文对于高碳烃燃烧新机理在点火延时时间以及物种浓度曲线进行了动力学分析,并与实验数据及国内外同类机理进行了对比,结果表明本文提出的正癸烷和正十一烷燃烧新机理在比较宽泛的温度、压力和当量比条件下都具有较高的模拟精度,为发展精确航空煤油燃烧模型提供了基础数据。同时考虑到详细机理的复杂性以及机理分析的计算量大和时耗长,本文基于误差传播的直接关系图形(Directed Relation Graph with Error Propagation,DRGEP)方法简化得到的包含709组分2793反应的正癸烷和包含820组分3115反应的正十一烷简化机理,使用DRGEP方法时所采用的数据点选自压力范围从1.0×10~5 Pa到1.0×10~6Pa,当量比范围从0.5到2.0,初始温度范围从600到1400时恒压点火的模拟结果在点火延迟时间附近区域的抽样,同时在正癸烷机理简化中选取正癸烷、O_2和N_2作为初始预选组分,正十一烷的机理简化中主要选取正十一烷、O_2和N_2作为初始预选组分,得到的简化机理在比较宽泛的条件下的预测结果与详细机理吻合很好。最后结合敏感度分析方法分析了正癸烷和正十一烷的点火延迟敏感性,考察了机理中影响点火的关键反应。结果表明:这些机理能够合理描述正癸烷和正十一烷的自点火特性,在工程计算流体力学仿真设计中有很好的应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号