首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 152 毫秒
1.
DNA是大部分生物包括病毒的基因载体。DNA双螺旋链通过A=T和G≡C两种碱基对编码实现对遗传信息的存储。碱基对中的相互作用对DNA双螺旋链的稳定性起到重要作用,直接关系到基因的复制和转录。当前研究中,我们构建了四组不同结构的DNA双螺旋链,进行了总共4.3μs的分子动力学模拟。通过伞形取样技术计算了DNA双螺旋链中碱基对分离的自由能曲线,并从分子尺度细节和相互作用能对自由能曲线进行解析。在碱基对G≡C的自由能曲线(PMF-PGC)上观察到三个峰,通过监测氢键数目的变化发现分别对应于G≡C三个氢键的断裂;而在A=T的自由能曲线(PMF-PAT)上只出现一个峰,说明A=T的两个氢键在分离过程中几乎同时断裂。PMF-PGC的总能垒比PMF-PAT高,主要是因为G≡C比A=T多一个氢键,更稳定。两条曲线的后段自由能仍然升高,而此时碱基对的氢键已断裂,这是DNA链骨架刚性所导致。我们还研究了碱基对稳定性受相邻碱基对的影响,发现邻近G≡C碱基对会增强A=T的稳定性,C≡G会削弱A=T的稳定性,T=A对A=T的影响较小。  相似文献   

2.
在此以前遗传字母序列中仅有四个字母(或碱基),即腺嘌呤(A),鸟嘌呤(G)、胸腺嘧啶(u或DNA的T)和胞嘧啶(C)。这些碱基通过氨基和羰基间的氢键使双链螺旋型RNA中的两条互补链结合在一起。其中,A与u形成两个氢键,G与C形成三个氢键,从而组成两个碱基对。生物世界就是靠这两个“碱基对”来运载遗传信息。最近,瑞士生物化学家Steven A.Benner证实其它碱基对亦可能运载遗传信息。例如,将鸟嘌呤或胞嘧啶中的羰基和氨基互相异位,可得到异嘌呤或异胞嘧啶。含这些非标准碱基的核苷酸能通过三个氢键作用形成所谓的Watson-Crick碱基对。  相似文献   

3.
本文通过对B—DNA分子中互补碱基对A—T、G—C水合作用的量子化学计算以及最优化处理求得了它们水合作用的最优配位模式。结果表明,当水分子与互补碱基对A—T、G—C共面且水分子与A—T碱基对中胸腺嘧啶(T)杂环上的O_2原子形成氢键以及与G—C碱基对中胞嘧啶(C)杂环上的O_2原子形成氢键时,它们的水合作用具有最稳定的配位模式。  相似文献   

4.
用密度泛函B3LYP方法在6-311+G**基组水平上对鸟嘌呤及顺(cis-)、反式(anti-)-6-烷基鸟嘌呤(O6-AlkylG)与DNA碱基(胸腺嘧啶T、胞嘧啶C、腺嘌呤A、鸟嘌呤G)的氢键二聚体结构进行了优化. 在MP2/cc-pVXZ(X=D,T)// B3LYP/6-311+G**水平上, 采用完全基组外推方法校正了氢键二聚体的相互作用能, 并用完全均衡校正法(CP)校正了基组重叠误差(BSSE). 在B3LYP/6-311+G**水平上计算了各氢键碱基对的全电子波函数, 并用分子中的原子理论(AIM)分析了碱基间的弱相互作用. 计算结果显示, 鸟嘌呤6-O烷基化改变了碱基间的氢键作用模式, 使碱基对发生了明显的螺旋桨式扭转和不同程度的位移, 碱基间的电子密度分布和氢键作用能明显减小. O6-AlkylG对DNA碱基间的氢键作用是去稳定化的, 去稳定化影响的顺序为GC>GG>GA≈GT. 计算结果与文献给出的实验结论基本一致.  相似文献   

5.
带电组氨酸侧链与DNA碱基间非键作用强度的理论研究   总被引:1,自引:0,他引:1  
采用MP2方法和6-31+G(d,p)基组优化得到了带有一个正电荷的组氨酸侧链与4个DNA碱基间形成的18个氢键复合物的气相稳定结构, 从文献中获取了组氨酸侧链与DNA碱基间形成的12个堆积和T型复合物的气相稳定结构, 使用包含基组重叠误差(BSSE)校正的MP2方法和aug-cc-pVTZ基组及密度泛函理论M06-2X-D3方法和aug-cc-pVDZ基组计算了这些复合物的结合能. 研究结果表明, 包含BSSE校正的M06-2X-D3方法和aug-cc-pVDZ基组能够给出较准确的结合能; 气相条件下, 组氨酸侧链与同种DNA碱基间的离子氢键作用明显强于堆积作用和T型作用, 组氨酸侧链最易通过离子氢键与胞嘧啶C和鸟嘌呤G作用形成氢键复合物, 组氨酸与胞嘧啶C和鸟嘌呤G间的T型作用强于与腺嘌呤A和胸腺嘧啶T间的离子氢键作用; 水相条件下, 组氨酸侧链与同种DNA碱基间的离子氢键作用仍明显强于堆积作用和T型作用, 组氨酸侧链更易与胞嘧啶C和鸟嘌呤G相互作用形成氢键复合物, 但是最强的组氨酸侧链与胞嘧啶C间的T型作用明显弱于与腺嘌呤A和胸腺嘧啶T间的离子氢键作用, 说明水相条件下组氨酸侧链与DNA碱基间主要通过离子氢键作用形成氢键复合物.  相似文献   

6.
以有机物的分子连接性指数和微扰分子轨道指数作结构、能量参数,从分析致癌有机物分子片段与生物遗传基因DNA链互补碱基对发生共价交联的构效角度出发,首次得出产生碱基移码型或碱基置换型化学致癌的主要过程是化合物分子片段中活性原子与DNA互补碱基对间氢键的共价结合,显示致癌活性的充分必要条件是碱基对G≡C间有两个氢键与致癌分子片段发生特异交联.对100余种已知致癌物的致癌分子片段进行计算分析,成功地获得了有机物分子片段定量结构-致癌活性的估测模式.  相似文献   

7.
张千慧  王阳  刘翠  杨忠志 《化学学报》2014,72(8):956-962
遗传信息的完整性不断受氧化基因的威胁,7,8-二氢-8-氧鸟嘌呤(8-oxo-G)是氧化DNA损伤最常见的产物. 氧化碱基会引起基因突变、癌变及衰老等. 应用量子化学方法分析得出:鸟嘌呤(G)被氧化为8-oxo-G后,其电荷分布、氢键的供体和受体位点的数目和位置随之改变,N7和O6原子所带的电荷变得更负,使得它们作为氢键供体的能力增强. 从而G被误认为其他碱基,与正常碱基形成多种氢键复合物. 可将8-oxo-G划分为3个作用位点与正常碱基相互作用. 与正常的单体相比,碱基对中形成氢键的受体原子上所带电荷平均变负0.05e,占原电荷的8%; 供体H原子所带电荷平均变正0.02e,占原电荷的4%. 1位点与正常碱基作用形成的氢键复合物更稳定,2位点和3位点性质相似,水溶剂使碱基对的结合能力减弱,其中与C作用形成氢键复合物的结合能减弱程度最大,且使碱基对结合能力的次序改变. 在8-oxo-G导致的GC→TA突变中,亲核反应位点从G所在链转到A(C)所在链,影响酶对碱基的识别,从而产生基因突变.  相似文献   

8.
谈勇  王一波 《化学学报》2006,64(13):1407-1410
利用Hartree-Fock方法, 选取6-31G*基组对Adenine-Thymine-Water氢键复合物可能存在的构型进行了优化, 然后用DFT PBE方法, 选取6-311++G(3d, 3p)基组对复合物的结合能进行计算, 结果表明水与DNA中配对碱基的相互作用, 不会显著影响碱基对的稳定性, 水的存在使得碱基对的扭转构型更接近真实DNA中碱基对的螺旋状结构.  相似文献   

9.
在水溶液中,由两条互补的单链DNA 构成的双螺旋沿着大沟有额外的氢键受体和给体,这些给体和受体暴露于周围环境,从而可以和专一性的结合分子(如蛋白)发生相互作用,形成特异性的复合物,也可以与另外的单链DNA 分子结合形成三链DNA.近年来,由于越来越多的证据表明:三链DNA 能在细胞体内形成,并具有多种生物学功能而引起了人们的广泛关注,成为生物化学、分子生物学和基因工程领域的一个前沿课题.通过三链DNA的形成,寡聚核酸可以参与基因转录过程,但是在生理条件下,三链DNA 的稳定性似乎是  相似文献   

10.
用密度泛函B3LYP方法在6-311+G**基组水平上对顺(cis-)、反式(anti-)O6-甲基鸟嘌呤(O6-MeG)和O4-甲基胸腺嘧啶(O4-MeT)与DNA碱基(腺嘌呤A、鸟嘌呤G)的非Watson-Crick氢键二聚体进行了优化. 在MP2/cc-pVXZ (X=D,T)//B3LYP/6-311+G**水平上, 采用完全基组外推方法校正了氢键二聚体的相互作用能, 并用完全均衡校正法(CP)校正了基组重叠误差(BSSE). 此外, 在B3LYP/6-311+G**水平上计算了各氢键碱基对的全电子波函数, 并用分子中的原子理论(AIM)和电子密度拓扑方法分析了碱基间的弱相互作用. 计算结果显示, 甲基化使碱基对间的氢键作用模式发生了明显的扭转和不同程度的位移, 碱基间的电子密度分布和氢键作用能明显减小, 甲基化对O6-MeG和O4-MeT与DNA碱基间的氢键作用是去稳定化的, 这种影响主要来自于大体积的甲基的空间效应和给电子效应, 且对顺式的影响明显大于反式. 计算结果与文献给出的实验结论基本一致.  相似文献   

11.
We report the properties of hydrophobic isosteres of pyrimidines and purines in synthetic DNA duplexes. Phenyl nucleosides 1 and 2 are nonpolar isosteres of the natural thymidine nucleoside, and indole nucleoside 3 is an analog of the complementary purine 2-aminodeoxyadenosine. The nucleosides were incorporated into synthetic oligodeoxynucleotides and were paired against each other and against the natural bases. Thermal denaturation experiments were used to measure the stabilities of the duplexes at neutral pH. It is found that the hydrophobic base analogs are nonselective in pairing with the four natural bases but selective for pairing with each other rather than with the natural bases. For example, compound 2 selectively pairs with itself rather than with A, T, G, or C; the magnitude of this selectivity is found to be 6.5-9.3 °C in Tm or 1.5-1.8 kcal/mol in free energy (25 °C). All possible hydrophobic pairing combinations of 1, 2, and 3 were examined. Results show that the pairing affinity depends on the nature of the pairs and on position in the duplex. The highest affinity pairs are found to be the 1-1 and 2-2 self-pairs and the 1-2 heteropair. The best stabilization occurs when the pairs are placed at the ends of duplexes rather than internally; the internal pairs may be destabilized by imperfect steric mimicry which leads to non-ideal duplex structure. In some cases the hydrophobic pairs are significantly stabilizing to the DNA duplex; for example, when situated at the end of a duplex, the 1-1 pair is more stabilizing than a T-A pair. When situated internally, the affinity of the 1-1 pair is the same as, or slightly better than, the analogous T-T mismatch pair, which is known to have two hydrogen bonds. The studies raise the possibility that hydrogen bonds may not always be required for the formation of stable duplex DNA-like structure. In addition, the results point out the importance of solvation and desolvation in natural base pairing, and lend new support to the idea that hydrogen bonds in DNA may be more important for specificity of pairing than for affinity. Finally, the study raises the possibility of using these or related base pairs to expand the genetic code beyond the natural A-T and G-C pairs.  相似文献   

12.
Uracil DNA glycosylase (UNG) locates uracil and its structural congener thymine in the context of duplex DNA using a base flipping mechanism. NMR imino proton exchange measurements were performed on free and UNG-bound DNA duplexes in which a single thymine (T) was paired with a series of adenine analogues (X) capable of forming one, two, or three hydrogen bonds. The base pair opening equilibrium for the free DNA increased 55-fold as the number of hydrogen bonds decreased, but the opening rate constants were nearly the same in the absence and presence of UNG. In contrast, UNG was found to slow the base pair closing rate constants (kcl) compared to each free duplex by a factor of 3- to 23-fold. These findings indicate that regardless of the inherent thermodynamic stability of the TX pair, UNG does not alter the spontaneous opening rate. Instead, the enzyme holds the spontaneously expelled thymine (or uracil) in a transient extrahelical sieving site where it may partition forward into the enzyme active site (uracil) or back into the DNA base stack (thymine).  相似文献   

13.
DNA is constantly exposed to endogenous and exogenous oxidative stresses. Damaged DNA can cause mutations, which may increase the risk of developing cancer and other diseases. G:C-C:G transversions are caused by various oxidative stresses. 2,2,4-Triamino-5(2H)-oxazolone (Oz), guanidinohydantoin (Gh)/iminoallantoin (Ia) and spiro-imino-dihydantoin (Sp) are known products of oxidative guanine damage. These damaged bases can base pair with guanine and cause G:C-C:G transversions. In this study, the stabilization energies of these bases paired with guanine were calculated in vacuo and in water. The calculated stabilization energies of the Ia:G base pairs were similar to that of the native C:G base pair, and both bases pairs have three hydrogen bonds. By contrast, the calculated stabilization energies of Gh:G, which form two hydrogen bonds, were lower than the Ia:G base pairs, suggesting that the stabilization energy depends on the number of hydrogen bonds. In addition, the Sp:G base pairs were less stable than the Ia:G base pairs. Furthermore, calculations showed that the Oz:G base pairs were less stable than the Ia:G, Gh:G and Sp:G base pairs, even though experimental results showed that incorporation of guanine opposite Oz is more efficient than that opposite Gh/Ia and Sp.  相似文献   

14.
A new base pair (called κ–π) of Watson–Crick type, with a H -bond pattern different from that in A –T and G –C base pairs, has been recently synthesized and shown to be stable and incorporable into duplex DNA and RNA by polymerases. This new basepair, which contains three H -bonds, is compared with G –C , in the framework of modern dynamical theory of quantum nonlocality and quantum correlations. Connection with the traditional treatment of proton transfer in DNA base pairs, which uses the adiabatic approximation, is explicitly made. As a result, the dynamics of the H -bond pattern of G –C is shown to exhibit a specific quantum mechanical phase stability, which is clearly missing in the case of κ–π. This finding is discussed and illustrated, also in connection with recent quantum chemical calculations of proton transfers in DNA base pairs. Additionally, certain speculations concerning the “evolutionary advantage” of G –C with respect to κ–π are briefly considered. © 1993 John Wiley & Sons, Inc.  相似文献   

15.
DNA logic gates   总被引:2,自引:0,他引:2  
A conceptually new logic gate based on DNA has been devised. Methoxybenzodeazaadenine ((MD)A), an artificial nucleobase which we recently developed for efficient hole transport through DNA, formed stable base pairs with T and C. However, a reasonable hole-transport efficiency was observed in the reaction for the duplex containing an (MD)A/T base pair, whereas the hole transport was strongly suppressed in the reaction using a duplex where the base opposite (MD)A was replaced by C. The influence of complementary pyrimidines on the efficiency of hole transport through (MD)A was quite contrary to the selectivity observed for hole transport through G. The orthogonality of the modulation of these hole-transport properties by complementary pyrimidine bases is promising for the design of a new molecular logic gate. The logic gate system was executed by hole transport through short DNA duplexes, which consisted of the "logic gate strand", containing hole-transporting nucleobases, and the "input strand", containing pyrimidines which modulate the hole-transport efficiency of logic bases. A logic gate strand containing multiple (MD)A bases in series provided the basis for a sharp AND logic action. On the other hand, for OR logic and combinational logic, conversion of Boolean expressions to standard sum-of-product (SOP) expressions was indispensable. Three logic gate strands were designed for OR logic according to each product term in the standard SOP expression of OR logic. The hole-transport efficiency observed for the mixed sample of logic gate strands exhibited an OR logic behavior. This approach is generally applicable to the design of other complicated combinational logic circuits such as the full-adder.  相似文献   

16.
This paper describes the design of novel base-discriminating fluorescent (BDF) nucleobases and their application to single nucleotide polymorphism (SNP) typing. We devised novel BDF nucleosides, (Py)U and (Py)C, which contain a pyrenecarboxamide chromophore connected by a propargyl linker. The fluorescence spectrum of the duplex containing a (Py)U/A base pair showed a strong emission at 397 nm on 327 nm excitation. In contrast, the fluorescence of duplexes containing (Py)U/N base pairs (N = C, G, or T) was considerably weaker. The proposed structure of the duplex containing a matched (Py)U/A base pair suggests that the high polarity near the pyrenecarboxamide group is responsible for the strong A-selective fluorescence emission. Moreover, the fluorescence of the duplex containing a (Py)U/A base pair was not quenched by a flanking C/G base pair. The fluorescence properties are quite different from previous BDF nucleobases, where fluorescence is quenchable by flanking C/G base pairs. The duplex containing the C derivative, (Py)C, selectively emitted fluorescence when the base opposite (Py)C was G. The drastic change of fluorescence intensity by the nature of the complementary base is extremely useful for SNP typing. (Py)U- and (Py)C-containing oligodeoxynucleotides acted as effective reporter probes for homogeneous SNP typing of DNA samples containing c-Ha-ras and BRCA2 SNP sites.  相似文献   

17.
Thymine glycol (Tg), 5,6-dihydroxy-5,6-dihydrothymine, is formed in DNA by the reaction of thymine with reactive oxygen species. The 5R Tg lesion was incorporated site-specifically into 5'-d(G(1)T(2)G(3)C(4)G(5)Tg(6)G(7)T(8)T(9)T(10)G(11)T(12))-3'; Tg = 5R Tg. The Tg-modified oligodeoxynucleotide was annealed with either 5'-d(A(13)C(14)A(15)A(16)A(17)C(18)A(19)C(20)G(21)C(22)A(23)C(24))-3', forming the Tg(6) x A(19) base pair, corresponding to the oxidative damage of thymine in DNA, or 5'-d(A(13)C(14)A(15)A(16)A(17)C(18)G(19)C(20)G(21)C(22)A(23)C(24))-3', forming the mismatched Tg(6) x G(19) base pair, corresponding to the formation of Tg following oxidative damage and deamination of 5-methylcytosine in DNA. At 30 degrees C, the equilibrium ratio of cis-5R,6S:trans-5R,6R epimers was 7:3 for the duplex containing the Tg(6) x A (19) base pair. In contrast, for the duplex containing the Tg(6) x G(19) base pair, the cis-5R,6S:trans-5R,6R equilibrium favored the cis-5R,6S epimer; the level of the trans-5R,6R epimer remained below the level of detection by NMR. The data suggested that Tg disrupted hydrogen bonding interactions, either when placed opposite to A(19) or G(19). Thermodynamic measurements indicated a 13 degrees C reduction of T(m) regardless of whether Tg was placed opposite dG or dA in the complementary strand. Although both pairings increased the free energy of melting by 3 kcal/mol, the melting of the Tg x G pair was more enthalpically favored than was the melting of the Tg x A pair. The observation that the position of the equilibrium between the cis-5R,6S and trans-5R,6R thymine glycol epimers in duplex DNA was affected by the identity of the complementary base extends upon observations that this equilibrium modulates the base excision repair of Tg [Ocampo-Hafalla, M. T.; Altamirano, A.; Basu, A. K.; Chan, M. K.; Ocampo, J. E.; Cummings, A., Jr.; Boorstein, R. J.; Cunningham, R. P.; Teebor, G. W. DNA Repair (Amst) 2006, 5, 444-454].  相似文献   

18.
In this study, we investigated the stability and structure of artificial base pairs that contain cyclohexyl rings. The introduction of a single pair of isopropylcyclohexanes into the middle of DNA slightly destabilized the duplex. Interestingly, as the number of the "base pairs" increased, the duplex was remarkably stabilized. A duplex with six base pairs was even more stable than one containing six A-T pairs. Thermodynamic analysis revealed that changes in entropy and not enthalpy contributed to duplex stability, demonstrating that hydrophobic interactions between isopropyl groups facilitated the base pairing, and thus stabilized the duplex. NOESY of a duplex containing an isopropylcyclohexane-methylcyclohexane pair unambiguously demonstrated its "pairing" in the duplex because distinct NOEs between the protons of cyclohexyl moieties and imino protons of both of the neighboring natural base pairs were observed. CD spectra of duplexes tethering cyclohexyl moieties also showed a positive-negative couplet that is characteristic of the B-form DNA duplex. Taken together, these results showed that cyclohexyl moieties formed base pairs in the DNA duplex without severely disturbing the helical structure of natural DNA. Next, we introduced cyclohexyl base pairs between pyrene and nucleobases as an "insulator" that suppresses electron transfer between them. We found a massive increase in the quantum yield of pyrene due to the efficient shielding of pyrene from nucleobases. The cyclohexyl base pairs reported here have the potential to prepare highly fluorescent labeling agents by multiplying fluorophores and insulators alternately into DNA duplexes.  相似文献   

19.
The formation of base pair radical anions is closely related to many fascinating research fields in biology and chemistry such as radiation damage to DNA and electron transport in DNA. However, the relevant knowledge so far mainly comes from studies on isolated base pair radical anions, and their behavior in the DNA environment is less understood. In this study, we focus on how the nucleobase sequence affects the properties of the guanine-cytosine (GC) base pair radical anion. The energetic barrier and reaction energy for the proton transfer along the N(1)(G)-H···N(3)(C) hydrogen bond and the stability of GC˙(-) (i.e., electron affinity of GC) embedded in different sequences of base-pair trimer were evaluated using density functional theory. The computational results demonstrated that the presence of neighboring base pairs has an important influence on the behavior of GC˙(-) in the gas phase. The excess electron was found to be localized on the embedded GC and the charge leakage to neighboring base pairs was very minor in all of the investigated sequences. Accordingly, the sequence behavior of the proton-transfer reaction and the stability of GC˙(-) is chiefly governed by electrostatic interactions with adjacent base pairs. However, the effect of base stacking, due to its electrostatic nature, is severely screened upon hydration, and thus, the sequence dependence of the properties of GC˙(-) in aqueous environment becomes relatively weak and less than that observed in the gas phase. The effect of geometry relaxation associated with neighboring base pairs as well as the possibility of proton transfer along the N(2)(G)-H···O(2)(C) channel have also been investigated. The implications of the present findings to the electron transport and radiation damage of DNA are discussed.  相似文献   

20.
The structure of the hexitol nucleic acid (HNA) h(GCGCTTTTGCGC) was determined by NMR spectroscopy. This unnatural nucleic acid was developed as a mimic for A‐RNA. In solution, the studied sequence is forming a symmetric double‐stranded structure with four central consecutive T⋅T wobble pairs flanked by G⋅C Watson‐Crick base pairs. The stem regions adopt an A‐type helical structure. Discrete changes in backbone angles are altering the course of the helix axis in the internal loop region. Two H‐bonds are formed in each wobble pair, and base stacking is preserved in the duplex, explaining the stability of the duplex. This structure elucidation provides information about the influence of a (T)4 fragment on local helix geometries as well as on the nature of the T⋅T mismatch base pairing in a TTTT tract.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号