首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
LiFePO4电极的倍率特性与材料的粒度和电子导电性有很大关系.采用共沉淀方法,调控预处理温度,将3种不同尺寸的FePO4前驱体通过表面修饰对-羟基苯甲酸的聚合物,可合成不同尺度的LiFePO4/C材料,分别为80 nm、200nm和1μm.纳米尺度LiFePO4-a/C电极,30C放电比容量达到了100 mAh·g-1,而微米级LiFePO4-c/C电极放电比容量仅为54mAh·g-1.均一碳包覆的LiFePO4/C电极表现出强抗氧化性,不仅提高其导电性,还可防止材料氧化.  相似文献   

2.
用真空固相反应与液相还原结合的方法,合成了锂离子电池正极材料——金属银掺杂的覆碳磷酸铁锂(LiFePO4/Ag/C),用X射线衍射、扫描电镜、循环伏安、交流阻抗等技术研究其结构、形貌及电化学性能。结果表明,该正极材料为橄榄石型晶体、类球形颗粒(粒径范围约为0.5~2.0μm);Ag掺杂能使合成的LiFePO4颗粒粒径更小、分布更均匀,有效地提高其电化学循环性能;LiFePO4/Ag/C电极0.1C倍率充放的首次放电比容量为138.2mAh/g,50次循环的放电比容量为130.1mAh/g,最高放电比容量为148.3mAh/g;LiFePO4/Ag/C正极材料具有良好的锂离子传导性能,其锂离子扩散系数(DLi+)为8.94×10-15cm2/s。  相似文献   

3.
以聚乙二醇(PEG)为纳米结构控制剂和碳源,采用液相法合成了纳米复合正极材料LiFePO4/C,其结构与电化学性能经XRD,SEM和恒电流充放电测试等表征。考察了4种不同分子量的PEG对LiFePO4/C晶型结构、粒径、形貌及充放电性能的影响。结果表明:随着PEG分子量的增大,LiFePO4/C的粒径减小、电导率增大、电化学性能提高。以PEG 4000合成的LiFePO4/C(Fd)的粒径小于50 nm,电导率为8.58×10-4S.cm-1,0.1C倍率下首次放电比容量高达165.8 mAh.g-1,循环20次后容量无衰减;1C倍率下,首次放电比容量为108.1 mAh.g-1,表明Fd具有优良的倍率性能。  相似文献   

4.
纳米磷酸铁锂的制备及电化学性能研究   总被引:4,自引:3,他引:1  
利用液相沉淀法合成了纳米级磷酸铁,并以此为铁源,通过碳热还原技术制备了粒径均匀的纳米级球形LiFePO4/C正极材料。经热分析(TG-DSC)、X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)以及恒电流充放电测试,研究了纳米磷酸铁及纳米磷酸铁锂材料的结构、形貌以及电化学性能。实验结果表明材料的首次放电比容量达161.8 mAh.g-1(0.1C),库仑效率为98.3%;室温下在0.2C、0.5C、1C、2C及5C倍率充放电其首次放电比容量分别为156.5、144、138.9、125.6和105.7 mAh·g-1,材料具有较好的倍率性能。  相似文献   

5.
以三甘醇为还原剂,Li2CO3和三价铁源FePO4为原料,通过多元醇还原法在低于300℃下直接制备了结晶良好的纯相LiFePO4,无须后续热处理。0.1C首次放电比容量为140.5mAh·g-1。为了进一步改善纯相LiFePO4的电导率,以聚乙烯醇为碳源,在700℃下热处理进行了碳包覆改性,获得了LiFePO4/C复合正极材料。合成的LiFePO4/C在0.1C下放电容量为155mAh·g-1,5C倍率下放电比容量保持在125mAh·g-1,具有很好的倍率性能和循环稳定性。  相似文献   

6.
应用液相共沉淀—碳热还原法,合成纳米尺寸球形LiFePO4材料,并研究烧结时间对该材料性能的影响.XRD、SEM、TEM及充放电循环测试表明,烧结时间为10 h,LiFePO4的球形度较好,颗粒尺寸:50~100nm.0.1C放电,初始容量为154.6 mAh/g,且具有良好的循环性能.  相似文献   

7.
高比能LiFePO_4的制备及性能研究   总被引:1,自引:0,他引:1  
应用液相沉淀法-固相烧结法制备高密度的LiFePO4/C及纯相LiFePO4.X射线衍射、扫描电镜、傅立叶红外光谱仪、电化学性能测试表明:该样品具有单一的橄榄石结构和3.4 V左右的放电平台,掺碳的LiFe-PO4具有更优良的性能,粒度较小粒径分布均匀,振实密度达1.46 g/cm3,0.1C首次放电比容量为144.6mAh/g,循环20次后容量保持率为93.2%,1C倍率首次放电比容量为133.5 mAh/g,循环20次后容量下降8.76%.  相似文献   

8.
徐嘉  王艳艳  王蕊  王博  潘越  曹殿学  王贵领 《电化学》2013,19(2):189-192
本文以壳聚糖单体为碳源兼凝胶剂,利用溶胶-凝胶煅烧合成了锂离子电池LiFePO4/C正极材料,使用XRD和SEM对合成的材料进行表征. 用恒电流充放电测试了LiFePO4/C电极的电化学性能,当壳聚糖单体与LiFePO4摩尔比为1:1.2时,600 oC煅烧的LiFePO4/C电极性能最佳,其粒径分布均匀(200 ~ 400 nm),该电极0.2C倍率放电比容量为155 mAh.g-1,30周期循环放电比容量仍保持152 mAh.g-1,库仑效率为97.9 %.  相似文献   

9.
应用固相反应法在惰性气氛下合成橄榄石型LiFePO4,然后制成聚苯胺掺杂C-LiFePO4复合正极材料.XRD,交流阻抗及电化学方法等测试表明,聚苯胺掺杂对LiFePO4电化学性能有一定的改善.当放电倍率为0.1C时,掺杂10%聚苯胺的(C-LiFePO4)0.9(PANI)0.1样品的放电容量达到164 mAh.g-1,且循环稳定性良好.在0.5C和1C的放电倍率下,也可以分别达到121.6 mAh.g-1和110.1 mAh.g-1的放电比容量.  相似文献   

10.
以月桂酸为碳源和表面活性剂,氢氧化锂、碳酸锂和醋酸锂为锂源,采用流变相法制备LiFePO4/C复合材料。运用X射线衍射(XRD)、扫描电子显微镜(SEM)、粒度分析、恒流充放电测试、循环伏安以及交流阻抗测试等方法对复合材料进行表征。结果表明,不同的锂源对LiFePO4/C复合材料的结构和电化学性能均有很大影响,以氢氧化锂为锂源合成的LiFePO4/C材料展示出最佳的循环性能和倍率性能。该材料在0.1C下放电比容量为153.4 mAh.g-1,在大倍率10 C下,容量保持率仍可达76%,甚至10C下循环800次后,容量衰减率仅有4%,SEM结果显示该材料具有较小的粒径(~200 nm),且分布集中,有效提高了电子迁移速率,从而改进了LiFePO4/C的倍率性能。  相似文献   

11.
石墨烯掺杂LiFePO4电极材料的合成及其电化学性能   总被引:2,自引:0,他引:2  
采用水热辅助法合成石墨烯改性的LiFePO4多孔微球电极材料.并对材料进行了X射线衍射(XRD),扫描电子显微镜(SEM),透射电子显微镜(TEM),傅里叶变换红外(FT-IR)光谱,充放电等表征.从结果可以看出在2 mol·L-1LiNO3电解液体系中单纯包碳的LiFePO4微球在1C、50C倍率时的比容量分别为137、64 mAh·g-1,而石墨烯改性的LiFePO4微球的比容量分别为141、105 mAh·g-1,表现出较好的倍率特性.恒流循环充放电测试60次后两种材料容量保持率分别为70.2%、83.7%.说明掺杂石墨烯构成的三维导电网络能明显改善LiFePO4的电化学性能.  相似文献   

12.
张鹏  孔令斌  罗永春  康龙 《电化学》2012,(4):337-341
本文采用碳热还原法,以廉价的FeCl3.6H2O、LiOH.H2O和NH4H2PO4为原料,以淀粉为还原剂和碳源,经600℃烧结制备了LiFePO4/C复合材料,方法重现性好且易规模化生产.采用X射线衍射(XRD)、扫描电镜(SEM)和透射电镜(TEM)测试材料结构,观察材料形貌.结果表明,经600℃烧结10 h所得产物具有纯相的橄榄石型晶体结构,良好的结晶性和规整的球状形貌,粒径为60~100 nm.包覆LiFePO4晶粒的碳层厚度为2 nm左右,碳含量为5%(by mass).材料的振实密度高达1.3 g·cm-3,在0.2C倍率下首次放电比容量为162 mAh·g-1,在0.5C、1C、2C、5C和10C倍率下首次放电比容量分别为143、135、127、116和105 mAh·g-1,10C倍率下500周期循环,其比容量仍有81 mAh·g-1.  相似文献   

13.
褚道葆  李艳  宋奇  周莹 《物理化学学报》2011,27(8):1863-1867
以富含植物蛋白的豆浆作为碳源, 以FePO4·4H2O和LiOH·H2O为原料, 采用流变相方法合成了锂离子电池正极材料LiFePO4/C. X射线衍射(XRD)和扫描电子显微镜(SEM)的表征结果显示, 样品具有良好的结晶性能, 平均粒径约200 nm, 颗粒表面有均匀网络状的碳包覆. 充放电循环研究结果表明: LiFePO4/C具有稳定的电化学循环性能, LiFePO4/C正极材料在0.1C倍率下首次放电比容量达到156 mAh·g-1, 首次充放电效率达到98.7%; 循环40次后, 放电比容量为149 mAh·g-1, 电池容量保持率在95%以上, 1C倍率下首次放电比容量达到134.7 mAh·g-1, 显示出较高的电化学容量和优良的循环稳定性.  相似文献   

14.
溶剂热法控制合成规则的LiFePO4颗粒   总被引:1,自引:0,他引:1  
采用溶剂热法在H2O和异丙醇的混合溶剂中合成橄榄石结构的磷酸铁锂(LiFePO4). 场发射扫描电镜(FESEM)结果表明, LiFePO4产品的形貌与导电添加剂密切相关, 当改变导电添加剂的种类(蔗糖、碳黑和石墨)时, 分别得到了棒状和方块状的LiFePO4颗粒. TEM和选区电子衍射(SAED)的结果表明, 棒状的LiFePO4晶体沿着[201]方向取向生长. 取向机理可能在于添加剂对晶体生长的吸附阻止作用. 充放电测试表明, 溶剂热法合成的LiFePO4(添加蔗糖)具有145.2 mAh·g-1的可逆容量和良好的循环保持能力, 且表现出优良的倍率放电性能和高温特性, 其4C放电容量为98.1 mAh·g-1, 保持了0.1C容量的67.6%, 且放电电压平台仍保持在3.12 V(vs Li/Li+).  相似文献   

15.
LiFePO4/Carbon composite cathode material was prepared using starch as carbon source by spray-pelleting and subsequent pyrolysis in N2. The samples were characterized by XRD, SEM, Raman, and their electrochemical performance was investigated in terms of cycling behavior. There has a special micro-morphology via the process, which is favorable to electrochemical properties. The discharge capacity of the LiFePO4.C composite was 170 mAh g-1, equal to the theoretical specific capacity at 0.1 C rate. At 4 C current density, the specific capacity was about 80 mAh g-1, which can satisfy for transportation applications if having a more flat discharge flat.  相似文献   

16.
采用喷雾干燥-高温固相法制备纳米LiFePO4与LiFePO4/C正极材料,用X-射线衍射,扫描电镜等对合成材料进行了表征,并对以LiFePO4为正极的电池进行了电化学性能测试。结果表明:材料合成最佳煅烧温度为600 ℃;合成过程中由于碳对LiFePO4晶型的生长有一定的抑制作用,相对于纯LiFePO4材料,LiFePO4/C材料粒径更小;并且,在此最佳合成温度下合成的LiF  相似文献   

17.
不同碳源对LiFePO4/C复合正极材料性能的影响   总被引:6,自引:1,他引:6  
唐致远  阮艳莉 《化学学报》2005,63(16):1500-1504
采用固相反应法在惰性气氛下合成了橄榄石型LiFePO4/C复合正极材料. 采用XRD, SEM和激光粒度分布(LSD)以及电化学测试等手段对目标材料进行了结构表征和性能测试. 考察了葡萄糖、乙炔黑以及石墨等不同碳源对目标材料性能的影响. 结果表明, 以葡萄糖作为碳源的正极材料具有优良的电化学性能, 首次放电比容量达142.5 mAh/g, 循环30次后, 容量衰减只有2.5%. 分析了不同碳源对目标材料性能影响的原因.  相似文献   

18.
采用原位聚合法制备了含有N-甲基、丙基哌啶双三氟甲磺酰亚胺离子液体的凝胶型聚合物电解质.利用SEM和XPS测试了电解质膜与LiFePO4电极的界面状态,充放电循环后,在电解质膜与LiFePO4之间有一层薄膜,这层薄膜中含有N和S元素.结果表明,随着充放电的不断进行,凝胶型电解质中未聚合的甲基丙烯酸甲酯与电极表面的锂离子之间发生电子转移,形成SEI膜,至少要三个循环后才能形成稳定的SEI膜.随着SEI膜的增厚,放电容量增加,阻碍了电子转移,使系统更加的稳定.在不同倍率下测试了凝胶型离子液体/PMMA聚合物电解质电池性能,当充放电达到30个循环时,0.2、0.5和1C下电池比容量分别为132、128和120mAh/g.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号