首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
In situ resistivity measurement has been performed to investigate the electron transport property of powered CdTe under high pressure and moderate temperature in a designed diamond anvil cell. Several abnormal resistivity changes can be found at room temperature when the pressure increases from ambient to 33 GPa. The abnormal resistivity changes at about 3.8 GPa and 10 GPa are caused by the structural phase transitions to the rock-salt phase and to the Cmcm phase, respectively. The other abnormal resistivity changes at about 6.5 GPa, 15.5 GPa, 22.2 GPa and about 30 GPa never observed before are due to the electronic phase transitions of CdTe. The origin of the abnormal change occurred at about 6.5 GPa is discussed. The temperature dependence of the resistivity of CdTe shows its semiconducting behaviour at least before 11.3 GPa.  相似文献   

2.
The phase diagram of zirconium metal has been studied using synchrotron X-ray diffraction and time-of-flight neutron scattering at temperatures and pressures up to 1273 K and 17 GPa. The equilibrium phase boundary of the α-ω transition has a dT/dP slope of 473 K/GPa, and the extrapolated transition pressure at ambient temperature is located at 3.4 GPa. For the ω-β transition, the phase boundary has a negative dT/dP slope of 15.5 K/GPa between 6.4 and 15.3 GPa, which is substantially smaller than a previously reported value of −39±5 K/GPa in the pressure range of 32-35 GPa. This difference indicates a significant curvature of the phase boundary between 15.3 and 35 GPa. The α-ω-β triple point was estimated to be at 4.9 GPa and 953 K, which is comparable to previous results obtained from a differential thermal analysis. Except for the three known crystalline forms, the β phase of zirconium metal was found to possess an extraordinary glass forming ability at pressures between 6.4 and 8.6 GPa. This transformation leads to a limited stability field for the β phase in the pressure range of 6-16 GPa and to complications of high-temperature portion of phase diagram for zirconium metal.  相似文献   

3.
The BaW04-17 phase is synthesized at 5.0 GPa and 610~C with a cubic-anvil apparatus and identified by XRD. Raman scattering measurement is carried out to investigate the phase behaviour of a pure BaW04-Ⅱ phase (space group P21/n, Z = 8) under hydrostatic pressures up to 14.8 GPa at ambient temperature. In each spectrum recorded for this phase, 27 Raman modes are observed, and all bands shift toward higher wavenumber with a pressure dependence ranging from 3.8 to 0.2 cm- 1/GPa. No pressure-driven phase transition occurs in the entire pressure range in this study. Our results indicate that the previously reported high pressure phase of Ba WO4 at pressure above about 10 GPa and room temperature (Errandonea et al. Phys. Rev. B 73(2006)224103) is not the BaW04-Ⅱ phase.  相似文献   

4.
 用金刚石压砧高压X光衍射技术研究了Ⅱ-Ⅵ族化合物CdTe的室温状态方程和室温高压相变。实验的最高压力达39.2 GPa。实验中发现CdTe从(3.3±0.1)GPa开始从闪锌矿结构相相NaCl结构相转变,相变时体积收缩15.8%;从(10.3±0.2)GPa开始从NaCl相向β-Sn结构相转变,相变时无体积突变;在(12.2±0.2)GPa由β-Sn相向正交结构相转变,相变时也无体积突变。CdTe的压缩数据用最小二乘法以Bridgman状态方程和Murnaghan状态方程拟合,得到其零压时合相变压力时各个相的体弹模量及体弹模量的压力微商,并与其它的实验合理论结果进行比较。  相似文献   

5.
An in-situ Raman spectroscopic study was conducted to explore the pressure induced phase transformation of spinel-type ferrite ZnFe2O4. Results indicate that ferrite ZnFe2O4 initially transforms to an orthorhombic structure phase (CaFe2O4-polymorph) at a pressure of 24.6 GPa. Such a phase transformation is complete at 34.2 GPa, and continuously remains stable to the peak pressure of 61.9 GPa. The coexistence of the two phases over a wide range of pressure implies a sluggish mechanism upon the spinel-to-orthorhombic phase transition. Upon release of pressure, the high pressure ZnFe2O4 polymorph is quenchable at ambient conditions.  相似文献   

6.
Electrical properties of stoichiometric iron sulfide (FeS) are investigated under high pressure with a designed diamond anvil cell. The process of phase transition is reflected by changing the electrical conductivity under high pressure, and the conductivity of FeS with the NiAs structure is found to be much smaller than other phases. Two new phase transitions without structural change are observed at 34.7 GPa and 61.3 GPa. The temperature dependence of the conductivity is found to be similar to that of a semiconductor when the pressure is higher than 35 GPa  相似文献   

7.
 使用Bundy和Dunn发展起来的带有烧结金刚石砧的Drickamer型高压装置,用固定点测压法标定实验压力,在室温及0~43 GPa的压力范围内测量了稀土金属中Pr、Nd、Sm、Gd、Tb、Dy、Ho、Tm、Lu和Yb的电阻随压力的变化。在各稀土元素的电阻随压力变化的曲线上,观测到了若干“凸起”和斜率突变点,根据Jayaraman提出的三价稀土在压力作用下的相变顺序,得到了这些突(凸)变点分别对应着hcp→Sm-type→dhcp→fcc相变顺序中的某一类型的相变压力。此外还观测到了Pr、Gd、Tb的fcc相随着压力再增高而发生的相变,根据已报导的关于Pr的工作,推测Gd和Tb的这一相变应为fcc→dfcc相变,它们分别发生在22.0和24.5 GPa。在本工作所得结果基础上对Johansson的三价稀土总相图进行了修正。  相似文献   

8.

We report on the observation of precursor effects of the rhombohedral-to-cubic phase transition in Indium Selenide (InSe) with several experimental techniques. The pressure at which these precursor defects are first observed depends on the sensitivity of the experimental technique. In transport measurements, which are very sensitive to low defect concentrations, precursor effects are observed 5 to 6 GPa below the phase transition pressure whereas in X-ray diffraction measurements precursor effects are only observed 2 GPa below the phase transition pressure. We report optical absorption measurements, in which the precursor effects are shown by the growth and propagation of dark linear defects appearing 3 GPa below the phase transition pressure. On the base of a simple model of the stress field around edge dislocations, we attribute the darkening of the InSe samples to local phase transitions to a high-pressure modification along linear dislocations. These results agree with room-pressure and high-pressure Raman spectra of samples compressed up to 7-8 GPa, which show new phonon lines not corresponding to the low-pressure phase.  相似文献   

9.
We have investigated the pressure induced structural changes in pentaerythritol {2,2-bis-(hydroxymethyl)-1,3-propanediol} with the help of X-ray diffraction studies. Our results show that this compound undergoes transformations to a lower symmetry phase between 5.2-5.9 GPa. It further undergoes phase transformations at ∼8.5 and ∼11 GPa; eventually evolving to a disordered phase beyond 14-15 GPa in agreement with our earlier Raman studies. On release of pressure from 18.5 GPa, the compound transforms back to the initial tetragonal phase.  相似文献   

10.
Mn doping effect on a wurtzite-to-cubic phase transformation in ZnO has been investigated by in situ high pressure X-ray powder diffraction using synchrotron radiation. Unit cell expansion is clearly observed in Mn-doped ZnO samples. Mn ions sit at Zn site in the wurtzite structure. The onset transition pressure for the wurtzite-to-cubic phase transformation decreases from about 9.5 GPa for pure ZnO to 6 GPa for sintered 2at.% Mn-doped ZnO while the compressibility and volume collapse at transition pressures are not sensitive to the Mn doping in the wurtzite phase. The doping of Mn ions in ZnO increases the onset transition pressure for the cubic-to-wurtzite phase transformation. The results could be explained by a reduction of phase transformation barriers for both transition paths by the Mn doping. The observation of reduction of the wurtzite-to-cubic phase transformation pressure might point out a new direction to synthesize cubic wurtzite phase of ZnO by doping transition element(s).  相似文献   

11.
Energy band structures under pressure of calcium selenide (CaSe) were calculated using the plane-wave pseudopotential code CASTEP. The results show a progressive transition from a direct to an indirect gap semiconductor at a pressure of about 2 GPa, in the B1 phase. An insulator-conductor change was also observed at 70 GPa, in the B2 phase. Concerning CaSe, these two results could not be evidenced in previous literature. Hence, our work is a first attempt in this direction.  相似文献   

12.
室温下Fe62Ni27Mn11(wt%)合金的压致fcc-hcp相变   总被引:1,自引:0,他引:1  
 本文采用Mao-Bell型金刚石对顶砧(DAC)及高压在位(in situ)粉末X光衍射照相方法研究了Fe62Ni27Mn11(wt%)合金在0~43.2 GPa压力范围内的压致结构相变和等温压缩行为,实验结果表明,该合金在低压时为fcc结构,在19.4 GPa压力附近出现压致fcc→hcp结构相变,直到43.2 GPa一直保持fcc、hcp二相共存;相变过程中,二相的molar体积相同;高压hcp相得晶格参数比值c/a基本上不随压力而变,可以表示为c/a=1.630±0.006;在卸压过程中,hcp相可保持到5.8 GPa,当卸压到常压时,该合金完全恢复到fcc结构;用Murnaghan等温固体状态方程对其压缩数据进行最小二乘法拟合,得到B0=(166±12) GPa,B0'=5.2±0.5;本文还给出了该合金的压致fcc→hcp结构相变模型,并对存在很宽的二相共存区间问题进行了初步探讨。  相似文献   

13.
The phase transition and melting curves of CaF2 are investigated by using the general utility lattice programme (CULP) via the shell model with molecular dynamics method. By calculating the entropy H (at OK) and Cibbs free energy G^* (at 30OK), we find that the phase transition pressure from the face-centred cubic (fee) structure to the orthorhombic structure is 11.40 CPa and 9.33 CPa at OK and 300K, respectively. The modified melting point of the fee CaF2 is in the range of 1650-1733K at OCPa. All these results are well consistent with the available experimental data and other theoretical results. We also obtain that the melting temperature of high pressure phase is 990-1073 K at 10 CPa. Moreover, the temperature dependences of the elastic constants Cij, bulk module B and shear module G are also predicted.  相似文献   

14.
An in situ Raman spectroscopic study was conducted to investigate the pressure induced phase transformation of MgCr2O4 spinel up to pressures of 76.4 GPa. Results indicate that MgCr2O4 spinel undergoes a phase transformation to the CaFe2O4 (or CaTi2O4) structure at 14.2 GPa, and this transition is complete at 30.1 GPa. The coexistence of two phases over a wide range of pressure implies a sluggish transition mechanism. No evidence was observed to support the pressure-induced dissociation of MgCr2O4 at 5.7-18.8 GPa, predicted by the theoretical simulation. This high pressure MgCr2O4 polymorphism remains stable upon release of pressure, but at ambient conditions, it transforms to the spinel phase.  相似文献   

15.
Ab initio calculations are performed to investigate the structural stability, electronic, structural and mechanical properties of 4d transition metal nitrides TMN (TM=Ru, Rh, Pd) for five different crystal structures, namely NaCl, CsCl, zinc blende, NiAs and wurtzite. Among the considered structures, zinc blende structure is found to be the most stable one among all three nitrides at normal pressure. A structural phase transition from ZB to NiAs phase is predicted at a pressure of 104 GPa, 50.5 GPa and 56 GPa for RuN, RhN and PdN respectively. The electronic structure reveals that these nitrides are metallic. The calculated elastic constants indicate that these nitrides are mechanically stable at ambient condition.  相似文献   

16.
 利用X射线粉末衍射方法,在室温高压下观察到了Pb0.8Sn0.2Te晶体的压致相变现象。实验是在DAC高压装置上完成的,压力从零逐步加至25.2 GPa。在常温常压下,Pb0.8Sn0.2Te具有fcc结构。从实验结果看到,有两个结构相变存在,分别在压力为6.1 GPa和14.9 GPa附近。我们认为,前一个结构相变与Pb0.8Sn0.2Te晶体的金属化有密切关系。实验分别从10.0 GPa和25.2 GPa降压至零,发现相变均是可逆的。  相似文献   

17.
 系统地研究了在0~3 MPa氧压下T1系超导材料的制备过程及其超导性质。结果表明:0.25~0.90 MPa氧压下所制备的样品为纯2223相,Tc0最高可达125.3 K;1.45~3.00 MPa氧压下样品为纯2212相,Tc0在95~100 K之间;0.90~1.45 MPa氧压下样品为2223及2212两相共存。对两种单相样品的高压研究结果表明,2223相样品比2212相样品有着较强的压力效应,在0~0.52 GPa压力下分别为4.0 K/GPa及2.0 K/GPa。  相似文献   

18.
We investigated the behavior of the structure of titanium hydride (TiH2), an important compound in hydrogen storage research, at elevated temperatures (0-120 °C) and high pressures (1 bar-34 GPa). Temperature-induced changes of TiH2 as indicated in the alteration of the ambient X-ray demonstrated a cubic to tetragonal phase transition occurring at about 17 °C. The main focus of this study was to identify any pressure-induced structural transformations, including possible phase transitions, in TiH2. Synchrotron X-ray diffraction studies were carried out in situ (diamond anvil cell) in a compression sequence up to 34 GPa and in subsequent decompression to ambient pressure. The pressure evolution of the diffraction patterns revealed a cubic (Fm-3m) to tetragonal (I4/mmm) phase transition at 2.2 GPa. The high-pressure phase persisted up to 34 GPa. After decompression to ambient conditions the observed phase transition was completely reversible. A Birch-Murnaghan fit of the unit cell volume as a function of pressure yielded a zero-pressure bulk modulus K0=146(14) GPa, and its pressure derivative K0=6(1) for the high-pressure tetragonal phase of TiH2.  相似文献   

19.
We use a diamond anvil cell for the first time to investigate the Raman spectra of an aqueous micellar solution of hexadecyltrimethylammonium bromide (CTAB) at pressures up to 3.85 GPa. The pressure-induced phase transition between the micellar and coagel phases is found to occur at 0.64 GPa and 60℃. This phase transition has a pressure hysteresis, and thus exhibits the first-order phase transition properties. Further experimental results show that although the structure of the coagel phase is similar to that of the CTAB crystal, the interchain distance is slightly larger in the coagel phase than that in the CTAB crystal.  相似文献   

20.
The room-temperature Raman and infrared spectra of zirconium vanadate (ZrV 2O7) were observed up to pressures of 12 GPa and 5.7 GPa, respectively. The frequencies of the optically active modes at ambient pressure were calculated using direct methods and compared with experimental values. Average mode Grüneisen parameters were calculated for the Raman and infrared active modes. Changes in the spectra under pressure indicate a phase transition at ∼1.6 GPa, which is consistent with the previously observed α (cubic) to β (pseudo-tetragonal) phase transition, and changes in the spectra at ∼4 GPa are consistent with an irreversible transformation to an amorphous structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号