首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have synthesized ditopic ligands L(1), L(2), and L(3) that contain two DO3A(3-) metal-chelating units with a xylene core as a noncoordinating linker (DO3A(3-) = 1,4,7,10-tetraazacyclododecane-1,4,7-triacetate; L(1) = 1,4-bis{[4,7,10-tris(carboxymethyl)-1,4,7,10-tetraazacyclododecane-1-yl]methyl}benzene; L(2) = 1,3-bis{[4,7,10-tris(carboxymethyl)-1,4,7,10-tetraazacyclododecane-1-yl]methyl}benzene; L(3) = 3,5-bis{[4,7,10-tris(carboxymethyl)-1,4,7,10-tetraazacyclododecane-1-yl]methyl}benzoic acid). Aqueous solutions of the dinuclear Gd(III) complexes formed with the three ligands have been investigated in a variable-temperature, multiple-field (17)O NMR and (1)H relaxivity study. The (17)O longitudinal relaxation rates measured for the [Gd(2)L(1-3)(H2O)(2)] complexes show strong field dependence (2.35-9.4 T), which unambiguously proves the presence of slowly tumbling entities in solution. The proton relaxivities of the complexes, which are unexpectedly high for their molecular weight, and in particular the relaxivity peaks observed at 40-50 MHz also constitute experimental evidences of slow rotational motion. This was explained in terms of self-aggregation related to hydrophobic interactions, pi stacking between the aromatic linkers, or possible hydrogen bonding between the chelates. The longitudinal (17)O relaxation rates of the [Gd(2)L(1-3)(H2O)(2)] complexes have been analysed with the Lipari-Szabo approach, leading to local rotational correlation times tau(1)(298) of 150-250 ps and global rotational correlation times tau(g)(298) of 1.6-3.4 ns (c(Gd): 20-50 mM), where tau(1)(298) is attributed to local motions of the Gd segments, while tau(g)(298) describes the overall motion of the aggregates. The aggregates can be partially disrupted by phosphate addition; however, at high concentrations phosphate interferes in the first coordination sphere by replacing the coordinated water. In contrast to the parent [Gd(DO3A)(H2O)(1.9)], which presents a hydration equilibrium between mono- and dihydrated species, a hydration number of q = 1 was established for the [Ln(2)L(1-3)(H2O)(2)] chelates by (17)O chemical shift measurements on Ln = Gd and UV/Vis spectrophotometry for Ln = Eu. The exchange rate of the coordinated water is higher for [Gd(2)L(1-3)(H2O)(2)] complexes k(ex)(298) = 7.5-12.0 x 10(6) s(-1)) than for [Gd(DOTA)(H2O)](-). The proton relaxivity of the [Gd(2)L(1-3)(H2O)(2)] complexes strongly decreases with increasing pH. This is related to the deprotonation of the inner-sphere water, which has also been characterized by pH potentiometry. The protonation constants determined for this process are logK(OH) = 9.50 and 10.37 for [Gd(2)L(1)(H2O)(2)] and [Gd(2)L(3)(H2O)(2)], respectively.  相似文献   

2.
The macrocyclic ligand 1,4,7,10-tetraazacyclododecane-1,4,7-triyl(methylenebenzyl-phosphinic acid) H3L3, has been prepared and its complexes with Eu, Gd and Tb(III) studied by NMR, relaxometry, luminescence and single crystal X-ray crystallography. In solution and in the crystal, the complexes have eight-coordinate metal centres with bridging phosphinate groups linking the two twisted square antiprismatic coordination polyhedra. A single stereoisomer crystallises from solution with an RRR and SSS configuration at the P centres in each sub-unit. The relaxivity of [GdL3]2 is low (1.9 mM-1 s-1, 298 K, 20 MHz), consistent with the absence of any proximate water molecules. The terbium dimer possesses a relatively long excited state lifetime (2.47 ms, 298 K).  相似文献   

3.
A novel class of 1,4,7,10-tetraazacyclododecane-1,4,7-tris(methylenecarboxylic) acid (DO3A)-based lanthanide complexes with relaxometric response to Ca(2+) was synthesized, and their physicochemical properties were investigated. Four macrocyclic ligands containing an alkyl-aminobis(methylenephosphonate) side chain for Ca(2+)-chelation have been studied (alkyl is propyl, butyl, pentyl, and hexyl for L(1), L(2), L(3), and L(4), respectively). Upon addition of Ca(2+), the r(1) relaxivity of their Gd(3+) complexes decreased up to 61% of the initial value for the best compounds GdL(3) and GdL(4). The relaxivity of the complexes was concentration dependent (it decreases with increasing concentration). Diffusion NMR studies on the Y(3+) analogues evidenced the formation of agglomerates at higher concentrations; the aggregation becomes even more important in the presence of Ca(2+). (31)P NMR experiments on EuL(1) and EuL(4) indicated the coordination of a phosphonate to the Ln(3+) for the ligand with a propyl chain, while phosphonate coordination was not observed for the analogue bearing a hexyl linker. Potentiometric titrations yielded protonation constants of the Gd(3+) complexes. log K(H1) values for all complexes lie between 6.12 and 7.11 whereas log K(H2) values are between 4.61 and 5.87. Luminescence emission spectra recorded on the Eu(3+) complexes confirmed the coordination of a phosphonate group to the Ln(3+) center in EuL(1). Luminescence lifetime measurements showed that Ca-induced agglomeration reduces the hydration number which is the main cause for the change in r(1). Variable temperature (17)O NMR experiments evidenced high water exchange rates on GdL(1), GdL(2), and GdL(3) comparable to that of the aqua ion.  相似文献   

4.
5.
A new bifunctional octa-coordinating ligand containing an aminobenzyl moiety, DO3APABn (H4DO3APABn = 1,4,7,10-tetraazacyclododecane-4,7,10-triacetic-1-{methyl[(4-aminophenyl)methyl]phosphinic acid}), has been synthesized. Its lanthanide(III) complexes contain one water molecule in the first coordination sphere. The high-resolution 1H and 31P spectra of [Eu(H2O) (DO3APABn)]- show that the twisted square-antiprismatic form of the complexes is more abundant in respect to the corresponding Eu(III)-DOTA complex. The 1H NMRD and variable-temperature 17O relaxation measurements of [Gd(H2O)(DO3APABn)]- show that the water residence time is short (298tauM = 16 ns) and falls into the optimal range predicted by theory for the attainment of high relaxivities once this complex would be endowed by a slow tumbling rate. The relaxivity (298r1 = 6.7 mM(-1) s(-1) at 10 MHz) is higher than expected as a consequence of a significant contribution from the second hydration sphere. These results prompt the use of [Gd(H2O)(DO3APABn)]- as a building block for the set-up of highly efficient macromolecular MRI contrast agents.  相似文献   

6.
The macrocycles 1,4,7-tris(carbamoylmethyl)-1,4,7,10-tetrazacyclododecane (1), 1,4,7-tris[(N-ethyl)carbamoylmethyl]-1,4,7,10-tetraazacyclododecane (2), 1,4,7-tris[(N,N-diethyl)carbamoylmethyl]-1,4,7,10-tetraazacyclododecane (3) and their Eu(III) complexes are prepared. Studies using direct Eu(III) excitation luminescence spectroscopy show that all three Eu(III) complexes exhibit only one predominant isomer with two bound waters under neutral to mildly basic conditions (Eu(X)(H(2)O)(2) for X = 1-3). There are no detectable ligand ionizations over the pH range 5.0-8.0 for Eu(3), 5.0-8.5 for Eu(2) or 5.0-9.5 for Eu(1). The three Eu(III) complexes show a linear dependence of second-order rate constants for the cleavage of 4-nitrophenyl-2-hydroxyethylphosphate (HpPNP) on pH in the range 6.5-8.0 for Eu(3), 7.0-8.5 for Eu(2) and 7.0-9.0 for Eu(1). This pH-rate profile is consistent with the Eu(III) complex-substrate complex being converted to the active form by loss of a proton and with Eu(III) water pK(a) values that are higher than 8.0 for Eu(3), 8.5 for Eu(2) and 9.0 for Eu(1). Inhibition studies show that Eu() binds strongly to the dianionic ligand methylphosphate (K(d) = 0.28 mM), and more weakly to diethylphosphate (K(d) = 7.5 mM), consistent with a catalytic role of the Eu(III) complexes in stabilizing the developing negative charge on the phosphorane transition state.  相似文献   

7.
A bis-polyazamacrocycle, 10'-bis(acetamido)ethane-bis[1,4,7-tri(carboxymethane)-1,4,7,10-tetraazacyclododecane] (DO3A-AME-DO3A) was synthesized for application in magnetic resonance imaging. The efficacy of DO3A-AME-DO3A as non ionic magnetic contrast agent was tested by performing relaxometric studies on its gadolinium complex. The longitudinal relaxivity, r(1) and transverse relaxivity, r(2) values were found to be 5.84 mM(-1)s(-1) and 6.82 mM(-1)s(-1), per Gd(III) at pH 7.0, 37 °C. The luminescence properties of europium complex of DO3A-AME-DO3A were investigated in aqueous medium. The lifetime of Eu(2)-DO3A-AME-DO3A in water was found to be 0.786 ms. Emission and luminescence lifetime measurements on the europium complex of DO3A-AME-DO3A gives a hydration number of q = 1.9. The reaction enthalpy and entropy were found to be, ΔH(0) = -(6.2 ± 2) kJ mol(-1), ΔS(0) = - (1.8 ± 0.4) kJ mol(-1)K(-1), and K(Eu)(298) = (1.8 ± 0.1).  相似文献   

8.
A two-component ligand system (1) containing 1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid (DO3A) as the hosting unit for the lanthanide cations and an appended asymmetrically functionalized 1,10-phenanthroline (phen) as the chromophore was synthesized. The 1:1 complexes with Eu(3+), Gd(3+), Tb(3+), and Yb(3+) have been prepared and studied in aqueous solution. For Gd.1, a relaxivity value of 2.4 mM(-1) s(-1) has been measured at 20 MHz and 25 degrees C, which indicates that there are no water molecules in the first coordination sphere of the metal ion. The analysis of high resolution (1)H NMR spectra of Yb.1 supports this view and suggests the direct involvement of the phen moiety in the coordination of the metal ion. For Eu.1 and Tb.1, the absorption and luminescence spectra, the overall luminescence efficiencies, and the metal-centered (MC) lifetimes were obtained; coordination features were also determined by comparing luminescence properties in water and deuterated water. For Eu.1 and Tb.1, the overall emission sensitization (se) process in air-equilibrated water was found to be notably effective with phi(se) = 0.21 and 0.11, respectively. A detailed study of the steps originating from light absorption at the phen unit and leading to MC sensitized emission was performed.  相似文献   

9.
To tune the lanthanide luminescence in related molecular structures, we synthesized and characterized a series of lanthanide complexes with imidazole-based ligands: two tripodal ligands, tris{[2-{(1-methylimidazol-2-yl)methylidene}amino]ethyl}amine (Me(3)L), and tris{[2-{(imidazol-4-yl)methylidene}amino]ethyl}amine (H(3)L), and the dipodal ligand bis{[2-{(imidazol-4-yl)methylidene}amino]ethyl}amine (H(2)L). The general formulas are [Ln(Me(3)L)(H(2)O)(2)](NO(3))(3)·3H(2)O (Ln = 3+ lanthanide ion: Sm (1), Eu (2), Gd (3), Tb (4), and Dy (5)), [Ln(H(3)L)(NO(3))](NO(3))(2)·MeOH (Ln(3+) = Sm (6), Eu (7), Gd (8), Tb (9), and Dy (10)), and [Ln(H(2)L)(NO(3))(2)(MeOH)](NO(3))·MeOH (Ln(3+) = Sm (11), Eu (12), Gd (13), Tb (14), and Dy (15)). Each lanthanide ion is 9-coordinate in the complexes with the Me(3)L and H(3)L ligands and 10-coordinate in the complexes with the H(2)L ligand, in which counter anion and solvent molecules are also coordinated. The complexes show a screw arrangement of ligands around the lanthanide ions, and their enantiomorphs form racemate crystals. Luminescence studies have been carried out on the solid and solution-state samples. The triplet energy levels of Me(3)L, H(3)L, and H(2)L are 21?000, 22?700, and 23?000 cm(-1), respectively, which were determined from the phosphorescence spectra of their Gd(3+) complexes. The Me(3)L ligand is an effective sensitizer for Sm(3+) and Eu(3+) ions. Efficient luminescence of Sm(3+), Eu(3+), Tb(3+), and Dy(3+) ions was observed in complexes with the H(3)L and H(2)L ligands. Ligand modification by changing imidazole groups alters their triplet energy, and results in different sensitizing ability towards lanthanide ions.  相似文献   

10.
Zhang X  Jing X  Liu T  Han G  Li H  Duan C 《Inorganic chemistry》2012,51(4):2325-2331
A unique gadolinium complex, Nap-DO3A-Gd, comprising a naphthylamine luminescent moiety, a di-2-picolylamine (DPA) binding chelator, and a 1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid (DO3A) moiety has been designed and synthesized as a dual-functional probe for selective magnetic resonance imaging and fluorescent sensing of copper(II) in living cells. Nap-DO3A-Gd exhibited a turn-on manner of relaxivity changes and a fluorescent quenching toward Cu(2+). Through the introduction of naphthalamide into the Gd(3+) contrast agent platform to restrict the coordination ability of the DPA chelator and with Gd(3+) coordinating to the DPA moiety to turn away the interferences of other metal cations from Cu(2+) detection, the probe featured selective relaxivity changes toward Cu(2+) over other metal ions and brought unique Cu(2+)-specific luminescent responses. The probe was water-soluble with the luminescent detection limit established at 6 ppb and was successfully used for luminescence imaging detection of copper(II) in living cells. The results demonstrated the efficiency and advantage of our approach in the development of a dual-modality image.  相似文献   

11.
A cyclen-based ligand containing trans-acetate and trans-methylenephosphonate pendant groups, H 6DO2A2P, was synthesized and its protonation constants (12.6, 11.43, 5.95, 6.15, 2.88, and 2.77) were determined by pH-potentiometry and (1)H NMR spectroscopy. The first two protonations were shown to occur at the two macrocyclic ring N-CH 2-PO 3 (2-) nitrogens while the third and fourth protonations occur at the two phosphonate groups. In parallel with protonation of the two -PO 3 (2-) groups, the protons from the NH (+)-CH 2-PO 3 (2-) are transferred to the N-CH 2-COO (-) nitrogens. The stability constants of the Ca (2+), Cu (2+), and Zn (2+) (ML, MHL, MH 2L, and M 2L) complexes were determined by direct pH-potentiometry. Lanthanide(III) ions (Ln (3+)) form similar species, but the formation of complexes is slow; so, "out-of-cell" pH-potentiometry (La (3+), Eu (3+), Gd (3+), Y (3+)) and competitive spectrophotometry with Cu(II) ion (Lu (3+)) were used to determine the stability constants. By comparing the log K ML values with those of the corresponding DOTA (H 4DOTA = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) and DOTP (H 8DOTP = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetramethylenephosphonic acid) complexes, the order DOTA < DO2A2P < DOTP was found for all the metal ion complexes examined here with the exception of the Ca (2+) complexes, for which the order is reversed. The relaxivity of Gd(DO2A2P) decreases between pH 2 and 7 but remains constant in the pH range of 7 < pH < 12 ( r 1 = 3.6 mM (-1) s (-1)). The linewiths of the (17)O NMR signals of water in the absence and presence of Gd(DO2A2P) (at pH = 3.45 and 8.5) between 274 and 350 K are practically the same, characteristic of a q = 0 complex. Detailed kinetic studies of the Ce (3+) and Gd (3+) complexes with DO2A2P showed that complex formation is slow and involves a high stability diprotonated intermediate Ln(H 2DO2A2P)*. Rearrangement of the diprotonated intermediate into the final complex is an OH (-) assisted process but, unlike formation of Ln(DOTA) complexes, rearrangement of Ln(H 2DO2A2P)* also takes place spontaneously likely as a result of transfer of one of the protons from a ring nitrogen to a phosphonate group. The order of the OH (-) assisted formation rates of complexes is DOTA > DO2A2P > DOTP while the order of the proton assisted dissociation rates of the Gd (3+) complexes is reversed, DOTP > DO2A2P > DOTA. (1)H and (13)C NMR spectra of Eu(DO2A2P) and Lu(DO2A2P) were assigned using two-dimensional correlation spectroscopy (2D COSY), heteronuclear multiple quantum coherence (HMQC), heteronuclear chemical shift correlation (HETCOR), and exchange spectroscopy (EXSY) NMR methods. Two sets of (1)H NMR signals were observed for Eu(DO2A2P) characteristic of the presence of two coordination isomers in solution, a twisted square antiprism (TSAP) and a square antiprism (SAP), in the ratio of ~93% and ~7%, respectively. Line shape analysis of the (1)H NMR spectra of Lu(DO2A2P) gave lower activation parameters compared to La(DOTP) for interconversion between coordination isomers. This indicates that the Ln(DO2A2P) complexes are less rigid probably due to the different size and spatial requirements of the carboxylate and phosphonate groups.  相似文献   

12.
Two new macrocyclic ligands, 6,6′-((1,4,7,10-tetraazacyclododecane-1,7-diyl)bis(methylene))dipicolinic acid (H2DODPA) and 6,6′-((4,10-dimethyl-1,4,7,10-tetraazacyclododecane-1,7-diyl)bis(methylene))dipicolinic acid (H2Me-DODPA), designed for complexation of lanthanide ions in aqueous solution, have been synthesized and studied. The X-ray crystal structure of [Yb(DODPA)](PF6)·H2O shows that the metal ion is directly bound to the eight donor atoms of the ligand, which results in a square-antiprismatic coordination around the metal ion. The hydration numbers (q) obtained from luminescence lifetime measurements in aqueous solution of the Eu(III) and Tb(III) complexes indicate that the DODPA complexes contain one inner-sphere water molecule, while those of the methylated analogue H2Me-DODPA are q = 0. The structure of the complexes in solution has been investigated by 1H and 13C NMR spectroscopy, as well as by theoretical calculations performed at the density functional theory (DFT; mPWB95) level. The minimum energy conformation calculated for the Yb(III) complex [Λ(λλλλ)] is in good agreement with the experimental structure in solution, as demonstrated by the analysis of the Yb(III)-induced paramagnetic 1H shifts. The nuclear magnetic relaxation dispersion (NMRD) profiles recorded for [Gd(Me-DODPA)]+ are typical of a complex with q = 0, where the observed relaxivity can be accounted for by the outer-sphere mechanism. However, [Gd(DODPA)]+ shows NMRD profiles consistent with the presence of both inner- and outer-sphere contributions to relaxivity. A simultaneous fitting of the NMRD profiles and variable temperature 17O NMR chemical shifts and transversal relaxation rates provided the parameters governing the relaxivity in [Gd(DODPA)]+. The results show that this system is endowed with a relatively fast water exchange rate k(ex)(298) = 58 × 10(6) s(–1).  相似文献   

13.
Alkylation of the hydrobromide salts of 1,4,7-tris(methoxycarbonylmethyl)-1,4,7,10-tetraazacyclododecane and 1,4,7-tris(ethoxycarbonylmethyl)-1,4,7,10-tetraazacyclododecane with appropriate α-bromoacetamides, followed by hydrolysis, provides convenient access to 10-(2-alkylamino-2-oxoethyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid derivatives that contain acid-sensitive functional groups. The utility of the method is demonstrated by improved syntheses of two known 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid monoamides bearing acid-sensitive ω-tritylthio alkyl chains in much greater yields based on cyclen as the starting material.

[Supplementary materials are available for this article. Go to the publisher's online edition of Synthetic Communications® for the following free supplemental resource(s): Full experimental and spectral details.]  相似文献   


14.
Dinuclear europium(III) complexes of the macrocycles 1,3-bis[1-(4,7,10-tris(carbamoylmethyl)-1,4,7,10-tetraazacyclododecane]-m-xylene (1), 1,4-bis[1-(4,7,10-tris(carbamoylmethyl)-1,4,7,10-tetraazacyclododecane]-p-xylene (2), and mononuclear europium(III) complexes of macrocycles 1-methyl-,4,7,10-tris(carbamoylmethyl)-1,4,7,10-tetraazacyclododecane (3), 1-[3'-(N,N-diethylaminomethyl)benzyl]-4,7,10-tris(carbamoylmethyl)-1,4,7,10-tetraazacyclododecane (4), and 1,4,7-tris(carbamoylmethyl)-1,4,7,10-tetraazacyclododecane (5) were prepared. Studies using direct excitation ((7)F0 --> (5)D0) europium(III) luminescence spectroscopy show that each Eu(III) center in the mononuclear and dinuclear complexes has two water ligands at pH 7.0, I = 0.10 M (NaNO3) and that there are no water ligand ionizations over the pH range of 7-9. All complexes promote cleavage of the RNA analogue 2-hydroxypropyl-4-nitrophenyl phosphate (HpPNP) at 25 degrees C (I = 0.10 M (NaNO3), 20 mM buffer). Second-order rate constants for the cleavage of HpPNP by the catalysts increase linearly with pH in the pH range of 7-9. The second-order rate constant for HpPNP cleavage by the dinuclear Eu(III) complex (Eu2(1)) at pH 7 is 200 and 23-fold higher than that of Eu(5) and Eu(3), respectively, but only 7-fold higher than the mononuclear complex with an aryl pendent group, Eu(4). This shows that the macrocycle substituent modulates the efficiency of the Eu(III) catalysts. Eu2(1) promotes cleavage of a dinucleoside, uridylyl-3',5'-uridine (UpU) with a second-order rate constant at pH 7.6 (0.021 M(-1) s(-1)) that is 46-fold higher than that of the mononuclear Eu(5) complex. Methyl phosphate binding to the Eu(III) complexes is energetically most favorable for the best catalysts, and this supports an important role for the catalyst in stabilization of the developing negative charge on the phosphorane transition state. Despite the formation of a bridging phosphate ester between the two Eu(III) centers in Eu2(1) as shown by luminescence spectroscopy, the two metal ion centers are only weakly cooperative in cleavage of RNA and RNA analogues.  相似文献   

15.
A new pyridine-containing ligand, N,N'-bis(6-carboxy-2-pyridylmethyl)ethylenediamine-N,N'-diacetic acid (H(4)L), has been designed for the complexation of lanthanide ions. (1)H and (13)C NMR studies in D(2)O solutions show octadentate binding of the ligand to the Ln(III) ions through the nitrogen atoms of two amine groups, the oxygen atoms of four carboxylates, and the two nitrogen atoms of the pyridine rings. Luminescence measurements demonstrate that both Eu(III) and Tb(III) complexes are nine-coordinate, whereby a water molecule completes the Ln(III) coordination sphere. Ligand L can sensitize both the Eu(III) and Tb(III) luminescence; however, the quantum yields of the Eu(III)- and Tb(III)-centered luminescence remain modest. This is explained in terms of energy differences between the singlet and triplet states on the one hand, and between the 0-phonon transition of the triplet state and the excited metal ion states on the other. The anionic [Ln(L)(H2O)]- complexes (Ln=La, Pr, and Gd) were also characterized by theoretical calculations both in vacuo and in aqueous solution (PCM model) at the HF level by means of the 3-21G* basis set for the ligand atoms and a 46+4 f(n) effective core potential for the lanthanides. The structures obtained from these theoretical calculations are in very good agreement with the experimental solution structures, as demonstrated by paramagnetic NMR measurements (lanthanide-induced shifts and relaxation-rate enhancements). Data sets obtained from variable-temperature (17)O NMR at 7.05 T and variable-temperature (1)H nuclear magnetic relaxation dispersion (NMRD) on the Gd(III) complex were fitted simultaneously to give insight into the parameters that govern the water (1)H relaxivity. The water exchange rate (k(298)(ex)=5.0 x 10(6) s(-1)) is slightly faster than in [Gd(dota)(H2O)]- (DOTA=1,4,7,10-tetrakis(carboxymethyl)-1,4,7,10-tetraazacyclododecane). Fast rotation limits the relaxivity under the usual MRI conditions.  相似文献   

16.
The Gd(III) complexes of the two dimeric ligands [en(DO3A)2] {N,N'-bis[1,4,7-tris(carboxymethyl)-1,4,7,10-tetraazacyclododecan-10-yl-methylcarbonyl]-N,N'-ethylenediamine} and [pi(DTTA)2]8- [bisdiethylenetriaminepentaacetic acid (trans-1,2-cyclohexanediamine)] were synthesized and characterized. The 17O NMR chemical shift of H2O induced by [en{Dy(DO3A)}2] and [pi{Dy(DTTA)}2]2- at pH 6.80 proved the presence of 2.1 and 2.2 inner-sphere water molecules, respectively. Water proton spin-lattice relaxation rates for [en{Gd(DO3A)(H2O)}2] and [pi{Gd(DTTA)(H2O)}2]2- at 37.0 +/- 0.1 degrees C and 20 MHz are 3.60 +/- 0.05 and 5.25 +/- 0.05 mM(-1) s(-1) per Gd, respectively. The EPR transverse electronic relaxation rate and 17O NMR transverse relaxation time for the exchange lifetime of the coordinated H2O molecule and the 2H NMR longitudinal relaxation rate of the deuterated diamagnetic lanthanum complex for the rotational correlation time were thoroughly investigated, and the results were compared with those reported previously for other lanthanide(III) complexes. The exchange lifetimes for [en{Gd(DO3A)(H2O)}2] (769 +/- 10 ns) and [pi{Gd(DTTA)(H2O)}2]2- (910 +/- 10 ns) are significantly higher than those of [Gd(DOTA)(H2O)]- (243 ns) and [Gd(DTPA)(H2O)]2- (303 ns) complexes. The rotational correlation times for [en{Gd(DO3A)(H2O)}2] (150 +/- 11 ps) and [pi{Gd(DTTA)(H2O)}2]2- (130 +/- 12 ps) are slightly greater than those of [Gd(DOTA)(H2O)]- (77 ps) and [Gd(DTPA)(H2O)]2- (58 ps) complexes. The marked increase in relaxivity (r1) of [en{Gd(DO3A)(H2O)}2] and [pi{Gd(DTTA)(H2O)}2]2- result mainly from their longer rotational correlation time and higher molecular weight.  相似文献   

17.
Rapid water exchange and slow rotation are essential for high relaxivity MRI contrast agents. A variable-temperature and -pressure (17)O NMR study at 14.1, 9.4, and 1.4 T has been performed on the dimeric BO(DO3A)(2), 2,11-dihydroxy-4,9-dioxa-1,12-bis[1,4,7,10-tetraaza-4,7,10-tris(carboxymethyl)cyclododecyl]dodecane, complex of Gd(III). This complex is of relevance to MRI as an attempt to gain higher (1)H relaxivity by slowing down the rotation of the molecule compared to monomeric Gd(III) complexes used as contrast agents. From the (17)O NMR longitudinal and transverse relaxation rates and chemical shifts we determined the parameters characterizing water exchange kinetics and the rotational motion of the complex, both of which influence (1)H relaxivity. The rate constant and the activation enthalpy for the water exchange, k(ex) and DeltaH(), are (1.0 +/- 0.1) x 10(6) s(-)(1)and (30.0 +/- 0.2) kJ mol(-)(1), respectively, and the activation volume, DeltaV(), of the process is (+0.5 +/- 0.2) cm(3) mol(-)(1), indicating an interchange mechanism. The rotational correlation time becomes about three times longer compared to monomeric Gd(III) polyamino-polyacetate complexes studied so far: tau(R) = (250 +/- 5) ps, which results in an enhanced proton relaxivity by raising the correlation time for the paramagnetic interaction.  相似文献   

18.
Introduction Recent interest in polyazamacrocyclic paramagnetic Gd(III) chelates largely results form their clinical appli-cation for magnetic resonance imaging (MRI) contrast agents. The ligand DOTA (1,4,7,10-tetraazacyclodo- decane-N,N',N',N'-tetraacetic acid) forms one of the most thermodynamically stable and kinetically inert complexes with the trivalent lanthanide cations of any known chelate. These properties make Gd-DOTA one of the most effective and the safest MRI contrast …  相似文献   

19.
The pK(a)s and Zn2+, Cd2+ and Cu2+ complexation constants (K) for 1,4,7-tris[(2'S)-acetamido-2'-(methyl-3'-phenylpropionate)]-1,4,7-triazacyclononane, 1, 1,4,7-tris[(2'S)-acetamido-2'-(1'-carboxy-3'-phenylpropane)]-1,4,7-triazacyclononane, H(3)2, 1,4,7-tris[(2'S)-acetamido-2'-(methyl-3'-(1H-3-indolyl)propionate)]-1,4,7-triazacyclononane, 3, and 1,4,7,10-tetrakis[(2'S)-acetamido-2'-(methyl-3'-phenylpropionate)]-1,4,7,10-tetraazacyclododecane, 4, 1,4,7,10-tetrakis[(2'S)-acetamido-2'-(1'-carboxy-3'-phenylpropane)]-1,4,7,10-tetraazacyclododecane, H(4)5, in 20 : 80 v/v water-methanol solution are reported. The pK(a)s within the potentiometric detection range for H(3)1(3+) = 8.69 and 3.59, for H(6)2(3+) = 9.06, 6.13, 4.93 and 4.52, H(3)3(3+) = 8.79 and 3.67, H(4)4(4+) = 8.50, 5.62 and 3.77 and for H(8)5(4+) = 9.89, 7.06, 5.53, 5.46, 4.44 and 4.26 where each tertiary amine nitrogen is protonated. The complexes of 1: [Zn(1)]2+(9.00), [Cd(1)]2+ (6.49), [Cd(H1)]3+ (4.54) and [Cu(1)]2+ (10.01) are characterized by the log(K/dm3 mol(-1)) values shown in parentheses. Analogous complexes are formed by 3 and 4: [Zn(3)]2+ (10.19), [Cd(3)]2+ (8.54), [Cu(3)]2+ (10.77), [Zn(4)]2+ (11.41) [Cd(4)]2+ (9.16), [Cd(H4)]3+ (6.16) and [Cu(4)]2+ (11.71). The tricarboxylic acid H(3)2 generates a greater variety of complexes as exemplified by: [Zn(2)-] (10.68) [Zn(H2)] (6.60) [Zn(H(2)2)+] (5.15), [Cd(2)](-) (4.99), [Cd(H2)] (4.64), [Cd(H2(2))]+ (3.99), [Cd(H(3)2)]2+ (3.55), [Cu(2)](-) (12.55) [Cu(H2)] (7.66), [Cu(H(2)2)]+ (5.54) and [Cu(2)2](4-) (3.23). The complexes of H(4)5 were insufficiently soluble to study in this way. The 1H and 13C NMR spectra of the ligands are consistent with formation of a predominant Zn2+ and Cd2+ Delta or Lambda diastereomer. The preparations of the new pendant arm macrocycles H(3)2, 3, 4 and H(4)5 are reported.  相似文献   

20.
A family of novel amphiphilic gadolinium chelates was successfully obtained by coupling the hydrophilic DOTA ligand [1,4,7,10-tetrakis(carboxymethyl)-1,4,7,10-tetraazacyclododecane] to squalenoyl moieties. Thanks to the self-assembling properties of their squalenoyl lipophilic moieties, all these derivatives were able to form, without any adjuvant, micellar or liposome-like supramolecular nanoassemblies, endowed with high relaxivities (r(1) = 15-22 mM(-1) s(-1) at 20 MHz and 37 °C). The remarkably high payloads of Gd(3+) ions reached 10 to 17 wt %. Moreover, one of these derivatives interacted with human serum albumin (HSA) forming mixed micelles, which induced a remarkable increase in relaxivity. Liposome-like structures were obtained when the Gd(3+) complex of DOTA was coupled to two squalene units. These liposomal structures were characterized by a high loading of Gd(3+) (about 74,000 gadolinium ions per particle of 100 nm). The supramolecular architecture of these nano-objects has been investigated by electron microscopy and small-angle X-ray scattering. Squalenoylation of gadolinium derivatives offers a platform to conceive contrast agents (CAs) in mild conditions (no toxic solvents, no surfactants, no energy input). These new amphiphilic gadolinium chelates could also find potential applications in theranostics, by forming mixed systems with other squalenoylated drugs, or to delineate blood vessels owing to the interaction with HSA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号