首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have used density functional theory method to calculate the Pt surface segregation energy in the Pt3Ni (111) surface doped with a third transition metal M and thus investigated the influence of component M on the extent of Pt segregation to the outermost layer of these Pt3Ni/M (111) surface. As a third component in the Pt3Ni/M (111) surface, V, Fe, Co, Mo, Tc, Ru, W, Re, Os, and Ir were predicted to lead to even more negative Pt surface segregation energies than that in the based Pt3Ni (111) surface; Ti, Cr, Mn, Cu, Zr, Nb, Rh, Hf, and Ta would still retain the preference of Pt segregation to the surface but with less extent than the replaced Ni, while Pd, Ag, and Au would completely suppress the Pt segregation to the Pt3Ni/M (111) surfaces. Furthermore, we examined the relation between the Pt surface segregation energy in the Pt3Ni/M (111) surfaces and the material properties (lattice parameter, heat of solution, and Pt surface segregation energy) of binary alloys Pt3M. It was found that the surface energy effect, strain effect, and heat of solution effect induced by the doped element M would collectively affect the Pt surface segregation energy in the Pt3Ni/M (111) surfaces.  相似文献   

2.
The magnetization reversal is studied in magnetron sputtered artificial superstructures of the form [Ni/Pt]6/Pt(x)/[Co/Pt]6 with perpendicular anisotropy, in which the [Co/Pt]6 stacks have higher coercivity than the [Ni/Pt]6. For x≥2 nm the two stacks reverse separately and exhibit characteristic stepped loops with a “plateau” in the region between the two switching fields. First-Order Reversal Curves (FORCs) reveal that the maximum coupling is obtained for x=1.5 nm. While each of the Ni/Pt and Co/Pt stacks by itself is thin enough to reverse in large domains when they are coupled, formation of maze like domains is observed. In this case some reversibility of the demagnetization curves associated with interfacial domain wall pinning appears while in the rest of the cases the reversal mechanism is based on lateral domain wall pinning with low reversibility. In the loops monitored by Extraordinary Hall Effect (EHE) measurements this “plateau” appears as a hump due to the different sign of the EHE coefficient between the [Ni/Pt]6 and [Co/Pt]6.  相似文献   

3.
采用密度泛函理论和slab模型,研究NH3在Ni单原子层覆盖的Pt(111)和WC(001)表面上的物理与化学行为,计算了Ni单原子覆盖表面的电子结构以及NH3的吸附与分解.表面覆盖的单原子层中,Ni原子的性质与Ni(111)面上的Ni原子明显不同.与Ni(111)相比,Ni/Pt(111)和Ni/WC(001)表面上Ni原子dz2轨道上的电子更多地转移到了其它位置,该轨道上电荷密度降低有利于NH3吸附.在Ni/Pt(111)和Ni/WC(001)面上NH3吸附能均大于Ni(111),NH3分子第一个N-H键断裂的活化能则明显比Ni(111)面上低,有利于NH3的分解,吸附能增大使NH3在Ni/Pt(111)和Ni/WC(001)面上更倾向于分解,而不是脱附.N2分子的生成是NH3分解的速控步骤,该反应能垒较高,说明N2分子只有在较高温度下才能生成.WC与Pt性质相似,但Ni/Pt(111)和Ni/WC(001)的电子结构还是有差异的,与Ni(111)表面相比,NH3在Ni/Pt(111)表面上分解速控步骤的能垒降低,而在Ni/WC(001)上却升高.要获得活性好且便宜的催化剂,需要对Ni/WC(001)表面做进一步改进,降低N2分子生成步骤的活化能.  相似文献   

4.
The catalytic decompositions of methanol and ethylene glycol on polycrystalline Ni/Pt surfaces were used as model probe reactions to explore oxygenate reforming for H2 production. In the current study we evaluated whether favorable chemistry observed on single crystal Ni/Pt(111) can be extended to more commercially relevant polycrystalline surfaces, thus bridging the “materials gap”. Auger electron spectroscopy (AES) confirmed that two distinct bimetallic configurations can be formed for the Ni/Pt system, each possessing unique chemical properties: one with the surface enriched in Ni atoms, designated NiPtPt, and the other with the subsurface region enriched in Ni atoms, designated PtNiPt. Consistent with single crystal studies, temperature programmed desorption (TPD) revealed that the NiPtPt configuration was more active for reforming to CO and H2 than either polycrystalline Pt or PtNiPt. High-resolution electron energy loss spectroscopy (HREELS) confirmed the presence of strongly bound reaction intermediates on NiPtPt, including aldehyde-like species, which was also observed on Ni–Pt–Pt(111). The strongly bound reaction intermediates most likely contribute to the high reforming activity observed on NiPtPt. Overall, TPD and HREELS results on polycrystalline surfaces were in general consistent with their single crystal counterparts for the reforming of oxygenates.  相似文献   

5.
Results are reported on the surface segregation behaviour of carbon from dilute solid solutions in Pt, Pd and Co. With Pt(100) no preferential surface segregation was observed; this is similar to previous results for Pt(111). For Pd(lOO), Pd(111) and Co(0001) segregation was observed with evidence for a surface phase transition of the type previously reported for Ni(111). These observations suggest that the strong carbon-carbon interactions within a graphite monolayer are of more importance in producing the transition than a good epitaxial fit to the substrate. A comparison of the kinetics of carbon segregation to Co(0001) with those predicted by a simple diffusion model suggest that surface processes such as nucleation or lateral diffusion may play important roles.  相似文献   

6.
H.Y. Ho 《Surface science》2007,601(3):615-621
The initial growth and alloy formation of ultrathin Co films deposited on 1 ML Ni/Pt(1 1 1) were investigated by Auger electron spectroscopy (AES), low energy electron diffraction (LEED), and ultraviolet photoelectron spectroscopy (UPS). A sequence of samples of dCo Co/1 ML Ni/Pt(1 1 1) (dCo = 1, 2, and 3 ML) were prepared at room temperature, and then heated up to investigate the diffusion process. The Co and Ni atoms intermix at lower annealing temperature, and Co-Ni intermixing layer diffuses into the Pt substrate to form Ni-Co-Pt alloys at higher annealing temperature. The diffusion temperatures are Co coverage dependent. The evolution of UPS with annealing temperatures also shows the formation of surface alloys. Some interesting LEED patterns of 1 ML Co/1 ML Ni/Pt(1 1 1) show the formation of ordered alloys at different annealing temperature ranges. Further studies in the Curie temperature and concentration analysis, show that the ordered alloys corresponding to different LEED patterns are NixCo1−xPt and NixCo1−xPt3. The relationship between the interface structure and magnetic properties was investigated.  相似文献   

7.
Multilayers of [Co/Ni(tNi)/Co/Pt]×4 are investigated for different Ni insertion layer thicknesses. The resulting magnetic properties and magnetic domain structures are compared with [Co/Ni]×8 multilayers. As determined by magneto-optical Kerr effect microscopy and a vibrating sample magnetometer measurements, all multilayers exhibited a perpendicular magnetic anisotropy. It is found that the nucleation field and magnetic coercivity of [Co/Ni(t)/Co/Pt]×4 multilayers are lower than (Co/Ni)×8 and decreased with Ni thickness. Magnetization decay measurements reveal that these multilayers did not show an exponential decay behavior as was observed in rare earth transition metal alloys. Very narrow wires will remain stables for several hours even with an applied magnetic field closer to the coercivity. Insertion of very thin Ni in (Co/Pt) multilayers offers a good way to optimize the magnetic properties of the material and adjust the domain size for nanowire-based devices.  相似文献   

8.
We use optical sum-frequency generation to investigate the stretching vibrations of cyanide (CN) molecules chemisorbed from aqueous electrolytes on single-crystalline Pt(111)- and Pt(110)-electrode surfaces. For clean and well-ordered Pt(111) electrodes, a single vibrational band between 2080 and 2150 cm–1 with a nonlinear frequency dependence on the potential is observed and assigned to the CN stretching vibration of chemisorbed cyanide. A second band between 2145 and 2150 cm–1 with very weak potential dependence appears on a surface which was subjected to oxidation-reduction cycles and is attributed to cyanide associated with a microscopically disordered surface. This assignment is supported by preliminary results for a Pt(110) single-crystal electrode. On a well-ordered (110) surface a single and potential-dependent cyanide vibration between 2070 and 2112 cm–1 is observed. After oxidation of the cyanide and readsorption, this band is replaced by a higher frequency band at 2144 cm–1 which is essentially not potential-dependent. Occasionally, additional vibrational bands at lower frequencies not reported in corresponding IR studies are observed on Pt(111).Paper presented at the 129th WE-Heraeus-Seminar on Surface Studies by Nonlinear Laser Spectroscopies, Kassel, Germany, May 30 to June 1, 1994  相似文献   

9.
CO adsorption on Pt(111) and vicinal Pt(111) surfaces has been studied by means of work function variation and He scattering measurements. AES and LEED were used mainly for correlations with other work. Special attention has been paid to the low coverage regime (θco < 0.1) with emphasis on surface structural dependencies. The minimum of the work function versus CO exposure curve occurs at a coverage less than 11% on “kink-free” surfaces. This is much lower than the hitherto commonly accepted value of 33%, and does not relate to any observed LEED superstructure. The value of Δφmin depends strongly on the surface structure. For an “ideal” Pt(111) surface with a step density less than 10?3 at a temperature of 300 K, Δφmin = ?240 meV. The scattering cross section Σ of CO adsorbed on Pt(111) for 63 meV He is typically > 250 Å2, i.e. much larger than expected from the Van der Waals radii of He and CO. For two nominal Pt(111) surfaces with step densities of 10?2 and less than 10?3, respectively, the measured Σ values varied by a factor of three. This can be explained by preferential CO occupation of defect sites, which are already not “seen” by thermal helium. By comparing results on a stepped (997) and a kinked (12 11 9) Pt surface with similar defect densities, the kinks are proven to play a decisive role. They probably form saddles in the recently proposed activation barrier for migration between terrace and step sites.  相似文献   

10.
Filtered He II (hv = 40.8 eV) photoemission spectra for acetylene and ethylene molecularly chemisorbed at T ~ 100 K on Ni(111), Ni(110), Pd(111) and Pt(111) have been obtained. The resulting vertical ionization potentials are presented and used within the framework of an approximate model to obtain information of the geometric structure of these molecules. Two initial state effects are discussed which are found to be important in deducing the molecular structures. These include an initial state shift of the lowest lying carbon-2s derived orbital and a metal atom induced shift of the σCC valence orbital for strongly distorted species. The magnitudes of both effects are estimated — the latter using Hartree — Fock LCAO calculations of Be interacting with acetylene or ethylene. The deduced geometries of chemisorbed ethylene are found to differ only slightly from those determined without considering these effects, but for acetylene two classes of structures are found. One class of structures is weakly distorted while the other is strongly distorted (~sp2.5 hybridization). The latter structure is consistent with recent vibrational loss studies of chemisorbed acetylene on Ni(111) and Pt(111). In contrast to chemisorbed acetylene, chemisorbed ethylene on Ni shows relatively weak distortions. More subtle crystallographic and structural effects for acetylene and ethylene on (111), (100) and (110) Ni surfaces are also discussed.  相似文献   

11.
H.Y. Ho 《Surface science》2006,600(5):1093-1098
Low-energy electron diffraction (LEED) and Auger electron spectroscopy (AES) were used to study the growth and the structural evolution of Ni/Co/Pt(1 1 1) following high-temperature annealing. From the oscillation of the specular beam of the LEED and Auger uptake curve, we concluded that the growth mode of thin Ni films on 1 ML Co/Pt(1 1 1) is at least 2 ML layer-by-layer growth before three-dimensional island growth begins. The alloy formation of Ni/1 ML Co/Pt(1 1 1) was analyzed by AES. The temperature for the intermixing of Ni and Co layers in the upper interface without diffusing into the bulk of Pt is independent of the thickness of Ni when a Co buffer is one atomic monolayer. After the temperature was increased, formations of Ni-Co-Pt alloy, Ni-Pt alloy and Co-Pt alloy were observed. The temperature required for the Ni-Co intermixing layer to diffuse into Pt bulk increases with the thickness of Ni. The interlayer distance as a function of annealing temperature for 1 ML Ni/1 ML Co/Pt(1 1 1) was calculated from the I-V LEED. The evolution of LEED patterns was also observed at different annealing temperatures.  相似文献   

12.
采用基于密度泛函理论的第一性原理方法,计算并分析了S原子在 Pt皮肤Pt3Ni(111)面不同位置的吸附特性.结果表明:S原子在Pt皮肤Pt3Ni的fcc位吸附最强,吸附能为5. 49 eV;与S原子在纯净Pt(111)表面的吸附相比,S原子在Pt皮肤Pt3Ni表面相应吸附位置的吸附能变小、与近邻的Pt原子形成的S-Pt键变长,表明掺杂的Ni会减小相应位点S原子的吸附能,降低体系对S原子的吸附能力,进而减弱S吸附对体系催化能力的影响;态密度分析发现, S原子的吸附使得Pt基催化剂的催化活性降低,主要是S的2p电子引起的;这些结果将为后续研究Pt基合金电极抗S中毒效果以及探究S原子吸附后Pt3Ni的活性位提供依据.  相似文献   

13.
Oxygen adsorption and desorption were characterized on the kinked Pt(321) surface using high resolution electron energy loss spectroscopy, thermal desorption spectroscopy and Auger electron spectroscopy. Some dissociation of molecular oxygen occurs even at 100 K on the (321) surface indicating that the activation barrier for dissociation is smaller on the Pt(321) surface than on the Pt(111) surface. Molecular oxygen can be adsorbed at 100 K but only in the presence of some adsorbed atomic oxygen. The dominance of the v(OO) molecular oxygen stretching mode in the 810 to 880 cm?1 range indicates that the molecular oxygen adsorbs as a peroxo-like species with the OO axis parallel or nearly parallel to the surface, as observed previously on the Pt(111) surface [Gland et al., Surface Sci. 95 (1980) 587]. The existence of at least two types of peroxo-like molecular oxygen is suggested by both the unusual breadth of the v(OO) stretching mode and breadth of the molecular oxygen desorption peak. Atomic oxygen is adsorbed more strongly on the rough step sites than on the smooth (111) terraces, as indicated by the increased thermal stability of atomic oxygen adsorbed along the rough step sites. The two forms of adsorbed atomic oxygen can be easily distinguished by vibrational spectroscopy since oxygen adsorbed along the rough step sites causes a v(PtO) stretching mode at 560 cm?1, while the v(PtO) stretching mode for atomic oxygen adsorbed on the (111) terraces appears at 490 cm?1, a value typical of the (111) surface. Two desorption peaks are observed during atomic oxygen recombination and desorption from the Pt(321) surface. These desorption peaks do not correlate with the presence of the two types of adsorbed atomic oxygen. Rather, the first order low temperature peak is a result of the fact that about three times more atomic oxygen can be adsorbed on the Pt(321) surface than on the Pt(111) surface (where only a second order peak is observed). The heat of desorption for atomic oxygen decreases from about 290kJ/mol (70 kcal/mol) to about 196 kJ/mol (47 kcal/mol) with increasing coverage. Preliminary results concerning adsorption of molecular oxygen from the gas phase in an excited state are also briefly discussed.  相似文献   

14.
In this work, the variation of the magnetic moments of the Ni/Pt multilayers are studied using the linearized augmented plane waves (LAPW) method in the framework of the density functional theory (DFT) implemented in the version of WIEN2K program. The systems have been modeled by seven layers slab separated in z direction by a vacuum region of four substrate layers. We present the results of the dependence of the magnetic properties with respect to the thickness variation of the different multilayers. The modeling of these systems finds an important empirical support. Experiment and theory show the same trends for the magnetic moments: hybridization effects between Ni and Pt are mostly localized at the interface.  相似文献   

15.
The adsorption and reaction of methylacetylene (H3CC≡CH) on Pt(111) and the p(2×2) and

surface alloys were investigated with temperature programmed desorption, Auger electron spectroscopy and low energy electron diffraction. Hydrogenation of methylacetylene to form propylene is the most favored reaction pathway on all three surfaces accounting for ca 20% of the adsorbed monolayer. Addition of Sn to the Pt(111) surface to form these two ordered surface alloys suppresses the decomposition of methylacetylene to surface carbon. The alloy surfaces also greatly increase the amount of reversibly adsorbed methylacetylene, from none on Pt(111) to 60% of the adsorbed layer on the

surface alloy. Methylacetylene reaction also leads to a small amount of desorption of benzene, along with butane, butene, isobutylene and ethylene. There is some difference in the yield of these other reaction products depending the Sn concentration, with the (2×2)-Sn/Pt(111) surface alloy having the highest selectivity for these. Despite previous experiments showing cyclotrimerization of acetylene to form benzene on the Pt–Sn surface alloys, the analogous reaction of methylacetylene on the alloy surfaces was not observed, that is, cyclotrimerization of methylacetylene to form trimethylbenzene. It is proposed that this and the high yield of propylene is due to facile dehydrogenation of methylacetylene because of the relatively weak H–CH2CCH bond compared to acetylene. The desorption of several C4 hydrocarbon products at low (<170 K) temperature indicates that some minor pathway involving C–C bond breaking is possible on these surfaces.  相似文献   

16.
The adsorption of H2O on clean and K-covered Pt(111) was investigated by utilizing Auger, X-ray and ultra-violet photoemission spectroscopies. The adsorption on Pt(111) at 100–150 K was purely molecular (ice formation) in agreement with previous work. No dissociation of this adsorbed H2O was noted on heating to higher temperatures. On the other hand, adsorption of H2O on Pt(111) + K leads to dissociation and to the formation of OH species which were characterized by a work function increase, an O 1s binding energy of 530.9 eV and UPS peaks at 4.7 and 8.7 eV below the Fermi level. The amount of OH formed was proportional to the K coverage for θK > 0.06 whereas no OH could be detected for θ? 0.06. Dissociation of H2O occurred already at T = 100 K, with a sequential appearance of O 1s peaks at 531 and 533 eV representing OH and adsorbed H2O, respectively. At room temperature and above only the OH species was observed. Annealing of the surface covered with coadsorbed K/OH indicated the high stability of this OH species which could be detected spectroscopically up to 570 K. The adsorption energy of H2O coadsorbed with K and OH on Pt(111) is increased relative to that of H2O on Pt. The work function due to this adsorbed H2O increases whereas it decreases for H2O on Pt(111). The energy shifts of valence and O1s core levels of H2O on Pt + K as deduced from a comparison of gas phase and adsorbate spectra are 2.8–4.2 eV compared to ≈ 1.3–2.3 eV for H2O on Pt (111). This increased relaxation energy shift suggests a charge transfer screening process for H2O on Pt + K possibly involving the unoccupied 4a1 orbital of H2O. The occurrence of this mode of screening would be consistent with the higher adsorption energy of H2O on Pt + K and with its high propensity to dissociate into OH and H.  相似文献   

17.
The coercivity of a Co/Pt multilayer with out-of-plane anisotropy can be lowered greatly if it is grown onto an ultrathin NiO underlayer . By making use of this characteristic, a series of samples glass/NiO(10 Å)/[Co(4 Å)/Pt(5 Å)]3/Pt(x Å)/[Co(4 Å)/Pt(5 Å)]3 with different Pt spacer thickness have been prepared to determine the ferromagnetic (FM) coupling between Co layers across the Pt layer. The measurements of major and minor hysteresis loops have shown that the FM coupling between the top and bottom Co/Pt multilayers decreases monotonically with the Pt layer thickness and disappears above the Pt layer thickness of 40 Å. This thickness of 40 Å is much larger than that in the literature. In addition to the FM coupling between the top and bottom Co/Pt multilayers across the Pt spacer, there exists a weak biquadratic coupling, which induces the broad transition of the bottom Co/Pt multilayer.  相似文献   

18.
Angle and velocity distributions for supersonic chopped beams of N2 and CH4 scattered from clean close-packed Pt(111) surfaces are reported. For specular direct-inelastic scattering N2 and CH4 velocity distributions can be characterized by empirical relationships used for Ar scattering. For instance, for specular scattering the following relation is found for Ar, N2 and CH4: 〈KEf〉 = A(KEi) + B(2kTs), where 〈KEf〉 is the average final kinetic energy, KEi is the incident kinetic energy and Ts is the surface temperature. The beam and surface temperature independent coefficients A and B are, respectively: Ar 0.87, 0.17; N2 0.79, 0.19 and CH4 0.84, 0.25. Unlike Ar, N2 desorbs from Pt with a Maxwell-Boltzmann velocity distribution near the surface temperature. Qualitatively the trapping probabilities for these molecules on Pt(111) are ordered: Xe > N2 > CH4> Ar.  相似文献   

19.
A comparative study of the adsorption of several gases on a Pt(S)-[9(111) × (111)] surface was performed using LEED, Auger spectroscopy, flash desorption mass spectrometry and work function changes as surface sensitive techniques. Adsorption was found to be generally less ordered on the stepped surface than on the corresponding flat surface with the exception of the oxygen, where r well ordered overlayer in registry over many terraces was found. Absolute coverages were determined from flash desorption experiments for O2, CO and C2N2. Similar values were obtained as on flat Pt surfaces. Two different surface species seem to be formed upon adsorption of C2H4 depending on the adsorption temperature. Contrary to reports from Pt(111) surfaces conversion between the two surface species is heavily restricted on the stepped surface. Work function changes revealed nonlinear adsorbate effects where the adsorbate is electronegative with respect to the substrate. Various adsorption models are discussed in the light of complementary experimental evidence. The results of this study are compared with data available from flat Pt surfaces and possible influences of steps are discussed. No general trends, however, emerge from this comparison and it seems that eventual influences of steps have to be considered individually for every adsorbate.  相似文献   

20.
Mechanism of the associative desorption of oxygen from the Pt(111) surface has been studied on atomic level by means of DFT/GGA calculations and kinetic Monte Carlo simulations. It has been found that two oxygen adatoms can occur, with sufficient probability, in neighboring on-top sites, which is essential for formation and subsequent evaporation of the oxygen molecule. Monte Carlo simulations have demonstrated effectiveness of this channel for O2 formation on Pt(111) and strongly support the suggested model of associative desorption from transition metal surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号