首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lewis base modification strategy on rare earth ternary catalyst was disclosed to enhance nucleophilic ability of active center during copolymerization of carbon dioxide and propylene oxide (PO), poly(propylene carbonate) (PPC) with H‐T linkages over 83%, and number–average molecular weight (Mn) up to 100 kg/mol was synthesized at room temperature using Y(CCl3OO)3‐ZnEt2‐glycerine catalyst and 1,10‐phenanthroline (PHEN) cocatalyst. Coordination of PHEN with active Zinc center enhanced the nucleophilic ability of the metal carbonate, which became more regio‐specific in attacking carbon in PO, leading to PPC with improved H‐T linkages. Moreover, the binding of PHEN to active Zinc center also raised the carbonate content of PPC to over 99%, whereas the PPC from common rare earth ternary catalyst was about 96%. Unlike the highly regio‐regular structure PPC but with relatively low molecular weight recently reported in the literature, our high molecular weight regio‐regular PPC did show significant improvement in thermal and mechanical performances. PPC with H‐T linkages up to 83.2% showed glass transition temperature (Tg) of 43.3 °C, while Tg of PPC with H‐T linkages of 69.7% was only 36.1 °C. When H‐T connectivity was raised from 69.7 to 83.2%, the modulus of PPC showed a 78% increase. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4451–4458, 2008  相似文献   

2.
采用2种方法制备了原位负载稀土三元催化剂,即先将均相的Y(CCl3OO)3-Glycerin体系负载在载体上,后逐滴加入ZnEt2(标记为Y(CCl3OO)3-Glycerin/γ-Al2O3/ZnEt2);或先将ZnEt2与载体反应,再与均相的Y(CCl3OO)3-Glycerin体系反应(标记为ZnEt2/γ-Al2O3/Y(CCl3OO)3-Glycerin).研究发现原位负载催化剂催化环氧丙烷和二氧化碳共聚合反应的活性比未负载前低24%~36%,通过分析催化剂制备过程中所生成的乙烷量的变化,证明原位负载时催化剂组分如Y(CCl3OO)3、Glycerin或ZnEt2发生了向载体孔隙内的扩散渗透,使得催化剂各组分配比与未负载催化剂相比发生了偏差,从而降低了催化活性;另一方面,表面羟基与ZnEt2反应形成了低效率的活性种,也是原位负载催化剂活性不高的原因之一.提出了影响原位负载稀土三元催化剂活性的2个主要因素,即活性种的反应活性和活性种的数量.通过调节催化剂组分配比、负载化阶段的振荡研磨时间、原位负载时的活性种状态、载体的表面状态等,可使负载催化剂的活性比未负载的稀土三元催化剂提高3.5%.  相似文献   

3.
A magnetically separable catalyst Al2O3‐MgO/Fe3O4 was prepared by Al2O3‐MgO supported on magnetic oxide Fe3O4 and charactered by FT‐IR, XRD and SEM. The mixed oxides afforded high catalytic activity and selectivity for synthesis of 1‐phenoxy‐2‐propanol from phenol and propylene oxide with 80.3% conversion and 88.1% selectivity to 1‐phenoxy‐2‐propanol. Especially, facile separation of the catalyst by a magnet was obtained and the catalytic performance of the recovered catalyst was unaffected even at the forth run.  相似文献   

4.
Natural gas resources, stimulate the method of catalytic methane decomposition. Hydrogen is a superb energy carrier and integral component of the present energy systems, while carbon nanotubes exhibit remarkable chemical and physical properties. The reaction was run at 700 °C in a fixed bed reactor. Catalyst calcination and reduction were done at 500 °C. MgO, TiO2 and Al2O3 supported catalysts were prepared using a co‐precipitation method. Catalysts of different iron loadings were characterized with BET, TGA, XRD, H2‐TPR and TEM. The catalyst characterization revealed the formation of multi‐walled nanotubes. Alternatively, time on stream tests of supported catalyst at 700 °C revealed the relative profiles of methane conversions increased as the %Fe loading was increased. Higher %Fe loadings decreased surface area of the catalyst. Iron catalyst supported with Al2O3 exhibited somewhat higher catalytic activity compared with MgO and TiO2 supported catalysts when above 35% Fe loading was used. CH4 conversion of 69% was obtained utilizing 60% Fe/Al2O3 catalyst. Alternatively, Fe/MgO catalysts gave the highest initial conversions when iron loading below 30% was employed. Indeed, catalysts with 15% Fe/MgO gave 63% conversion and good stability for 1 h time on stream. Inappropriateness of Fe/TiO2 catalysts in the catalytic methane decomposition was observed.  相似文献   

5.
二氧化碳-环氧丙烷共聚物的链结构控制   总被引:3,自引:0,他引:3  
针对制约二氧化碳-环氧丙烷共聚物(PPC)规模化应用的玻璃化温度低的问题,提出了改进PPC链结构的3个方法,即提高共聚物的分子量、制备交联型PPC、合成区域规整结构PPC.通过研究链结构变化对PPC热性能和机械性能的影响,证明通过共聚物链结构的设计和控制,可以大幅度增强PPC的分子间作用力,从而提高了PPC的使用温度,改善了PPC的使用性能.  相似文献   

6.
使用双金属氰化物/稀土配合物复合催化剂催化二氧化碳和环氧丙烷共聚合,其催化效率比双金属氰化物催化剂有显著提高,得到了数均相对分子质量大于1.0×105的聚合物。研究了复合催化剂的组成(如稀土的种类、稀土与锌的比例(Ln/Zn)、稀土配合物中酸根离子的酸性等)对共聚反应的影响,同时研究了反应体系的压力及反应时间对催化活性的影响。采用Y(CCl3COO)3稀土金属配合物有利于共聚反应的进行。当n(Y)/n(Zn)=6、聚合4 h后,其催化活性比单纯的双金属氰化物提高了31.5%,聚合物的相对分子质量则没有太大变化,而副产物碳酸丙烯酯的质量分数低于2%,而在该温度下单独采用稀土三元催化剂时副产物碳酸丙烯酯的生成量通常在10%以上。聚合物中碳酸酯含量低于双金属氰化物的催化产物,说明稀土配合物只是起到活化金属与环氧丙烷配位的作用,没有提高共聚物的碳酸酯含量,整个共聚合反应依然遵循双金属氰化物催化的共聚反应机理。  相似文献   

7.
Several rare earth‐doped, calcium‐based magnetic catalysts were prepared for the synthesis of glycerol carbonate. The basicity and basic strength analysis of the catalysts showed that the doping of rare earth improved the basicity of the catalysts, and the doping of lanthanum maximized it. In addition, with the doping of lanthanum, the particle size of the catalyst became smaller to promote the organic reactants near the active sites of catalysts, thereby effectively improving the performance. NiFe2O4@[CaO‐La2O3] shows better catalytic performance with 99.0% yield of glycerol carbonate compared to the other catalysts. The NiFe2O4@(CaO‐La2O3) could be reused in six cycles without significant loss in activity.  相似文献   

8.
A CuO/Al2O3 catalyst was prepared using the impregnation method. The catalytic activity of CuO/Al2O3 for the ozonation of acid red B (ARB) in aqueous solution was studied, the chemical oxygen demand (COD) removal rate was an indicator for catalytic activity evaluation. The effects of initial ARB concentration, solution pH, and different oxidative degradation systems on oxidative degradation of ARB solution were studied. The CuO/Al2O3 catalyst was characterized using X‐ray diffractometry (XRD), N2 adsorption desorption test, X‐ray photoelectron spectroscopy (XPS), and zero‐point charge (pHzpc). The results show that copper species on the carrier were in the form of CuO and highly dispersed on the carrier. CuO can increase the alkalinity of the Al2O3 surface, and the CuO/Al2O3 catalyst facilitates the decomposition of O3 into ·OH, which was beneficial for the catalytic O3 oxidation degradation reaction. With the increase of the initial concentration of simulated wastewater, the CuO/Al2O3 catalytic reaction still has a high COD removal rate. Alkaline solution was of benefit to catalyze the degradation of ARB solution. When the ARB solution pH = 8.93, the degradation reaction was carried out for 40 min, the COD removal rate reached 83.2%. The degradation reaction was dominated by the hydroxyl radical (·OH) reaction.  相似文献   

9.
由环氧丙烷(PO)和CO2交替共聚合成脂肪族聚碳酸亚丙酯,CO2利用率高, 所得产物具有一定的力学性能和生物降解性能, 具有广泛应用前景. 目前, 用于CO2和环氧化合物共聚的催化体系主要包含锌、钴、镉、铬、铝和稀土等金属活性中心, 结构、活性各异的催化剂体系, 其催化性能和产物性能也各具特色. 其中, 稀土三元催化剂(ZnEt2-甘油-三氯乙酸钇)因合成聚碳酸酯产物的分子量高、碳酸酯单元含量高、聚醚及环碳酸酯副产物少的特点而受到关注. 但是由于催化剂催化效率低, 聚合时间长, 产品成本高, 使得工业化规模生产受到限制.本文基于稀土三元催化体系, 将催化剂负载于硅胶及锌改性硅胶, 优化了其制备条件, 同时考察了添加季铵盐对催化CO2/环氧丙烷共聚合成聚碳酸酯性能的影响. 结果表明, 在1 L聚合釜中, 于3.5 MPa和70 oC反应条件下, ZnO担载量及ZnO/SiO2添加量对反应性能均有影响. 当3 wt% ZnO/SiO2的添加量为5 g时, 稀土三元催化体系的活性为4845.2 g/molZn..所得聚合物经过多次纯化处理后, 能够有效提高材料的热学性能, 即有效除去产物中的ZnO对聚合物的热稳定性有重要作用. 添加含有不同阴离子(F- , Cl- 和Br- )的季铵盐可显著影响稀土三元催化剂的活性. 其中, 仅四甲基氟化铵可以明显提高反应活性乃至聚合物分子量. 在3 wt% ZnO/SiO2载体和四甲基氟化铵的协同作用下, 稀土三元催化体系的共聚性能明显提 升, 活性最高可达5223.0 g/molZn. 聚合物结构分析表明, 在载体和四甲基氟化铵存在下, 聚合物分子量明显提高, 可达到20万以上, 分子量分布明显变窄, 且聚合物结构如碳酸酯的单元含量、副产物含量以及聚合物产品玻璃化温度基本不变, 后者均保持在40-41 ?C. 基于此, 我们提出了在ZnO改性硅胶载体及四甲基氟化铵存在下稀土三元催化体系催化CO2/环氧丙烷共聚的反应机理: ZnO/SiO2载体有利于稀土三元催化体系的分散, 而四甲基氟化铵则有利于吸附在ZnEt2上的环氧丙烷开环.  相似文献   

10.
采用溶剂法合成了热稳定性高的金属有机骨架材料MIL-53(Al)(MIL:Materials of Institut Lavoisier),用此材料为载体负载钴催化剂用于CO的催化氧化反应,并与Al2O3负载的钴催化剂进行了对比.采用热重-差热扫描量热(TG-DSC)、傅里叶变换红外(FTIR)光谱、X射线衍射(XRD)、N2物理吸附-脱附、透射电子显微镜(TEM)、氢气程序升温还原(H2-TPR)等方法对催化剂的结构性质进行了表征.TG和N2物理吸附-脱附结果表明,载体MIL-53(Al)有好的稳定性和高的比表面积;XRD以及TEM结果表明Co/MIL-53(Al)上负载的Co3O4颗粒粒径(平均约为5.03 nm)明显小于Al2O3上Co3O4颗粒粒径(平均约为7.83 nm).MIL-53(Al)的三维多孔结构中分布均匀的位点能很好地分散固定Co3O4颗粒,高度分散的Co3O4颗粒有利于CO的催化氧化反应.H2-TPR实验发现Co/MIL(Al)催化剂的还原温度低于Co/Al2O3催化剂的还原温度,低的还原温度表现为高的催化氧化活性.CO催化氧化结果表明,MIL-53(Al)负载钴催化剂的催化活性明显高于Al2O3负载钴催化剂,MIL-53(Al)负载钴催化剂在160°C时使CO氧化的转化率达到98%,到180°C时CO则完全转化,催化剂的结构在催化反应过程中保持稳定.  相似文献   

11.
To design highly efficient catalysts, new concepts for optimizing the metal–support interactions are desirable. Here we introduce a facile and general template approach assisted by atomic layer deposition (ALD), to fabricate a multiply confined Ni‐based nanocatalyst. The Ni nanoparticles are not only confined in Al2O3 nanotubes, but also embedded in the cavities of Al2O3 interior wall. The cavities create more Ni–Al2O3 interfacial sites, which facilitate hydrogenation reactions. The nanotubes inhibit the leaching and detachment of Ni nanoparticles. Compared with the Ni‐based catalyst supported on the outer surface of Al2O3 nanotubes, the multiply confined catalyst shows a striking improvement of catalytic activity and stability in hydrogenation reactions. Our ALD‐assisted template method is general and can be extended for other multiply confined nanoreactors, which may have potential applications in many heterogeneous reactions.  相似文献   

12.
Pt‐Co/Al2O2 catalyst has been studied for CO2 reforming of CH4 to synthesis gas. It was found that the catalytic performance of me catalyst was sensitive to calcination temperature. When Co/Al2O3 was calcined at 1473 K prior to adding a small amount of Pt to it, the resulting bimetallic catalyst showed high activity, optimal stability and excellent resistance to carbon deposition, which was more effective to the reaction than Co/Al2O3 and Pt/Al2O3 catalysts. At lower metal loading, catalyst activity decreased in the following order: Pt‐Co/ Al2O3 > Pt/Al2O3 > Co/Al2O3. With 9% Co, the Co/Al2O3 calcined at 923 K was also active for CO2 reforming of CH4, however, its carbon formation was much more fast man that of the Pt‐Co/Al2O3 catalyst. The XRD results indicated that Pt species well dispersed over the bimetallic catalyst. Its high dispersion was related to the presence of CoAl2O4, formed during calcining of Co/Al2O3 at high temperature before Pt addition. Promoted by Pt, Co/Al2O4 in the catalyst could be reduced partially even at 923 K, the temperature of pre‐reduction for the reaction, confirmed by TPR. Based on these results, it was considered that the zerovalent platinum with high dispersion over the catalyst surface and the zerovalent cobalt resulting from Co/Al2O4 reduction are responsible for high activity of the Pt‐Co/Al2O3 catalyst, and the remain Co/Al2O4 is beneficial to suppression of carbon deposition over the catalyst.  相似文献   

13.
Ln2O3/Al2O3催化酯化合成邻苯二甲酸二辛酯   总被引:10,自引:0,他引:10  
Ln_2O_3/Al_2O_3催化酯化合成邻苯二甲酸二辛酯陈其瑞,张凤美,罗明润,焦肇林(安徽师范大学化学系,芜湖241000)关键词稀土氧化物,担载催化剂,催化酯化,邻苯二甲酸二辛酯邻苯二甲酸二(2-乙基己醇用酯(Dioctylphthalate)是一...  相似文献   

14.
Ni catalysts supported on various mixed oxides of Al2O3 with rare earth oxide and transitional metal oxides were synthesized. The studies focused on the measurement of the autothermal reforming of methane to hydrogen over Ni catalysts supported on the mixed oxide ZrxCe30-xAl70Oδ (x=5, 10, 15). The catalytic performance of Ni/Zr10Ce20Al70Oδ was better than that of other catalysts. XRD results showed that the addition of Zr to Ni/Ce30Al70Oδ prevented the formation of NiAl2O4 and facilitated the dispersion of NiO. Effects of CuO addition to Zr10Ce20Al70Oδ were also investigated. The activity of Ni catalyst supported on CuO-ZrO2-CeO2-Al2O3 was somewhat affected and the Ni/Cu5Zr10Ce20Al65Oδ showed the best catalytic performance with the highest CH4 conversion, yield of H2, selectivity for H2 and H2/CO production ratio in operation temperatures ranging from 650 to 750℃.  相似文献   

15.
An efficient nanocatalyst of ZnO‐supported CuO/Al2O3 (CuO/ZnO/Al2O3 nanocatalyst) was prepared by the co‐precipitation method and characterized by scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, X‐ray powder diffraction and Brunauer–Emmett–Teller surface area analysis. CuO/ZnO/Al2O3 nanocatalyst proved to be a very efficient catalyst on the synthesis of propargylamines under solvent‐free conditions in high yields. Moreover, the catalyst can be recyclable without reducing catalytic activity up to five times.  相似文献   

16.
In this research,new catalyst with high industrial impact is developed,which can catalyze the conversion of CO2 to methane through methanation reaction.A series of catalysts based on nickel oxide were prepared using wetness impregnation technique and ageing,followed by calcination at 400℃.Rh/Ni(30:70)/Al2O3 catalyst was revealed as the most potential catalyst based on the results of catalytic activity measurement monitored by Fourier Transform Infrared Spectroscopy(FTIR)and Gas Chromatography(GC).The results showed 90.1%CO2 conversion and 70.8% yield at 400℃.  相似文献   

17.
Decomposition of CCl4 into diphenyl carbonate (DPC) was examined over metal oxides modified SiMCM-41. ZnO/SiMCM-41 and Fe2O3/SiMCM-41 showed high activity in DPC synthesis. Although many other metal oxides, such as La2O3, CuO, Al2O3 and alkali or alkaline earth oxide, were success in destruction of CCl4, they displayed nearly no activity on DPC synthesis. ZnO/SiMCM-41 and Fe2O3/SiMCM-41 were characterized by X-ray diffraction (XRD), UV-Raman, 29Si MAS NMR and N2 adsorption-desorption isotherms, and results showed that ferric and zinc oxide were supported onto SiMCM-41. The well ZnO dispersion in SiMCM-41 channels and the weak electrostatic interaction between chlorine anion and Zn2+ play an important role for the high activity of ZnO/SiMCM-41 in decomposition of CCl4 into DPC.  相似文献   

18.
Vapor‐phase aldol condensation of n‐butyraldehyde to 2‐ethyl‐2‐hexenal was studied at 1 atm and 150~ 300°C in a fixed‐bed, integral‐flow reactor by using NaX, KX, γ‐Al2O3 and Na/NaOH/γ‐Al2CO3 catalysts. Ion exchange of NaX zeolite with potassium acetate solution results in a decrease of crystallinity and apparent lowering of surface area, whereas the basic strength is enhanced. Treatment of γ‐Al2O3 with NaOH and Na causes a large decrease of the surface area but strong enhancement of the catalyst basicity. The catalytic activity on the basis of unit surface area is in the order Na/NaOH/γ‐Al2O3 < KXU < KXW < NaX >γ‐Al2O3, in accordance with the relative catalyst basic strength. The molar ratio of trimeric to dimeric products increases with increasing the reaction temperature and the catalyst basic strength except for Na/NaOH/γ‐Al2O3. Very high selectivity of 2‐ethyl‐2‐hexenal (>98.5%) was observed for reactions over NaX zeolite at 150°C. Based on the FT‐IR and the catalytic results, the reaction paths are proposed as follows: self‐aldol condensation of n‐butyraldehyde, followed by dehydration produces 2‐ethyl‐2‐hexenal, which then reacts with n‐butyraldehyde and successively dehydrates to 2,4‐diethyl‐2,4‐octadienal and 1,3,5‐triethylbenzene. For the reaction over NaX, the calculated Arrhenius frequency factor and activation energy are 314 mol/g·h and 32.6 kJ/mol, respectively.  相似文献   

19.
The catalytic behavior of a molybdenum oxide catalyst supported on Al-pillared montmorillonite in the propene metathesis reaction has been investigated. Comparison with two reference catalysts (Mo/SiO2 and Mo/Al2O3) was also studied. Pillared clay catalysts show an important activity loss and activity recovery by air regeneration was obtained.  相似文献   

20.
The synthesis of trifluoroacetaldehyde by vapor-phase oxidation of 2,2,2-trifluoroethanol using supported vanadium catalysts was studied. Significant differences were observed in the reaction outcomes resulting from different types of catalysts. The ZrO2- and Al2O3-supported catalyst demonstrated both high catalytic activity and selectivity. The addition of co-catalysts such as MoO3 or SnO2 improved catalytic performance (Selectivity: up to 91%; S.T.Y.: >200 g L−1 h−1). The experimental results on catalyst lifetime showed a marked decrease in the activity of the Al2O3-supported catalyst within tens of hours, while the ZrO2-supported catalyst showed little, if any, performance alterations for 2000 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号