首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this article, a CaO-based catalyst was prepared by impregnating chloride salts on CaO to develop a highly efficient heterogeneous catalyst for the synthesis of glycerol carbonate (GC) from glycerol and dimethyl carbonate. LiCl/CaO exhibited a high catalytic activity under moderate reaction conditions. The effects of the LiCl loadings, the amount of catalyst and the calcination temperature on the catalytic activity were investigated. The highest yield of 94.19% glycerol carbonate was obtained at 65 °C on CaO loaded with 10% LiCl after 1 h, and the catalyst had high stability in reusing work. Scanning electron microscopy (SEM), X-ray diffraction (XRD), BET, CO2-TPD, XPS and thermalgravity (TG) were used to characterize the prepared catalyst. It was found that the high catalytic activity of CaO after modification with LiCl is associated with the structural aspects and the amount of basicity of the catalyst. The Li2O2 species, which is a strong basic site that is formed by the substitution of the Ca2+ in CaO lattice by Li+, has great activity for transesterification.  相似文献   

2.
Perovskite‐type oxides based on rare‐earth metals containing lanthanum manganate are promising catalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in alkaline electrolyte. Perovskite‐type LaMnO3 shows excellent ORR performance, but poor OER activity. To improve the OER performance of LaMnO3, the element cobalt is doped into perovskite‐type LaMnO3 through a sol–gel method followed by a calcination process. To assess electrocatalytic activities for the ORR and OER, a series of LaMn1?xCoxO3 (x=0, 0.05, 0.1, 0.2, 0.3, 0.4, and 0.5) perovskite oxides were synthesized. The results indicate that the amount of doped cobalt has a significant effect on the catalytic performance of LaMn1?xCoxO3. If x=0.3, LaMn0.7Co0.3O3 not only shows a tolerable electrocatalytic activity for the ORR, but also exhibits a great improvement (>200 mV) on the catalytic activity for the OER; this indicates that the doping of cobalt is an effective approach to improve the OER performance of LaMnO3. Furthermore, the results demonstrate that LaMn0.7Co0.3O3 is a promising cost‐effective bifunctional catalyst with high performance in the ORR and OER for application in hybrid Li?O2 batteries.  相似文献   

3.
《中国化学会会志》2018,65(7):868-874
In this work, the NiFe2O4@TiO2/reduced graphene oxide (RGO) ternary nanocomposites with high saturation magnetization and catalytic efficiency have been synthesized through the following steps. First, graphene oxide was prepared using the modified Hummer's method. Second, the NiFe2O4 nanoparticles were successfully prepared using the hydrothermal method. Third, the core shell‐structured NiFe2O4@TiO2/RGO nanocomposite precursors were easily obtained through hydrolysis reaction. The morphology of NiFe2O4@TiO2/RGO nanocomposites was characterized from scanning electron microscope (SEM) and transmission electron microscope (TEM) images. Moreover, the results of X‐ray diffraction (XRD) patterns proved that the TiO2 coating shell consisted of anatase. The vibrating sample magnetometer (VSM) measurements showed that the saturation magnetization value of NiFe2O4@TiO2/RGO ternary nanocomposites was 25 emu/g. The X‐ray photoelectron spectroscopy (XPS) analysis confirmed that only part of the graphite oxide (GO) was reduced to RGO in the ternary nanocomposite. The degradation experiments proved that NiFe2O4@TiO2/RGO nanocomposite exhibited the high catalytic efficiency and outstanding recyclable performance for rhodamine B (RhB).  相似文献   

4.
A series of M/MgO (M?=?CaO, KNO3, KOH, K2CO3) catalysts were prepared by a dry impregnation method and used for synthesis of glycerol carbonate from glycerol and dimethyl carbonate. It was found that K2CO3/MgO was the most efficient catalyst, with a glycerol carbonate yield of approximately 99% under the conditions: DMC/glycerol molar ratio 2.5:1, catalyst/raw material weight ratio 1%, reaction time 2?h, and reaction temperature 80?°C. FTIR, BET, TEM, and XRD were used for characterization of the catalyst and showed that the active sites seemed to be K2O formed on the K2CO3/MgO catalyst. Finally, a recycling experiment showed that the catalyst was relatively stable and could be reused up to four times, at least, by regeneration.  相似文献   

5.
The reaction between lanthanum oxide and strontium carbonate was studied non-isothermally between 350 and 1150 °C at different heating rates, intermediates and the final solid product were characterized by X-ray diffractometry (XRD). The reaction proceeds through formation of lanthanum oxycarbonate La2O(CO3)2, lanthanum dioxycarbonate La2O2CO3, and non-stoichiometric strontium lanthanum oxide La2SrOx (x = 4 + δ). La4SrO7 was found to be the final product which begins to form at ∼700 °C. Li+ doping enhances the formation of the final product as well as commencement of the reactions at lower temperatures.  相似文献   

6.
A novel magnetic binary‐metal‐oxide‐coated nanocataly composing of a hollow Fe3O4 core and CeO2‐La2O3 shells with Au nanoparticles encapsulated has been created in this work. The structural features of catalysts were characterized by several techniques, including SEM, TEM, UV‐vis, FTIR, XRD, XPS and TGA analyses. After the coating of CeO2‐La2O3 layer, CeO2‐La2O3/Au/C/Fe3O4 microspheres showed a superior thermal stability and catalytic reactivity compared with a pure CeO2 or La2O3 layer. Accompanied by the burning of carbon layer, the specific surface could be increased by the formation of double‐shelled structure. Besides, the desired samples could be separated by magnet, implying the superior recycle performance. Using the reduction of 4‐nitrophenol by NaBH4 as a model reaction, the microspheres exhibited highly reusability, superior catalytic activity, thermal stability, which are attributed to the unique double‐shelled structure of the support, uniform distribution of Au nanoparticles, the highly thermal stability of CeO2‐La2O3 layer and mixed oxide synergistic effect. As a consequence, the unique nanocatalyst will open a promising way in the fabrication of the double‐shelled hollow binary‐metal‐oxide materials for future research and has great potential in other applications.  相似文献   

7.
A lanthanum zirconate La2Zr2O7 was synthesized by soft mechanochemical method using zirconium oxynitrate ZrO(NO3)2·6H2O and lanthanum carbonate La2(CO3)3·8H2O as reagents. Mechanical activation of the reagents was carried out in a centrifugal planetary ball mill. The processes occurring during calcination of the jointly and the separately mechanically activated salt mixture were studied using DSC, TG coupled with mass spectrometry, XRD analysis, and FTIR spectroscopy. It was shown that in the course of joint mechanical activation in the mill alongside with intimate mixing of the reagents and their amorphization exchange reaction occurred, producing lanthanum nitrate, basic lanthanum nitrate, basic zirconium carbonate, and hydrated zirconium oxide. The DSC curve of the jointly mechanically activated salt mixture showed a strong exothermic peak at 878 °C which was not associated with mass loss. This peak was attributed to La2Zr2O7 crystallization in agreement with XRD data. Nanocrystalline lanthanum zirconate synthesized by annealing of the jointly mechanically activated salt mixture was characterized using XRD analysis, scanning, and transmission electron microscopy.  相似文献   

8.
A series of silica gel immobilized lanthanum catalysts were prepared for the atom‐economy synthesis of N‐substituted carbamates from urea derivatives and dimethyl carbonate. The La/SiO2 catalysts with lanthanum loadings varied from 1.3 wt% to 8.5 wt% were characterized by AES, BET, XRD, TEM, FT‐IR, XPS and TPD. According to the characterization, lanthanum species with particle sizes of 5–10 nm on the surface of silica gel were formed. The catalysts were all amorphous and the surface areas were 336.5–530.2 m2/g. NH3‐TPD analysis showed that all samples exhibited similar acid strength with different acid amounts. FT‐IR measurement indicated that the component of lanthanum species on the catalyst surface were La(OH)3, LaOOH and hydrated La2O3. Also, the peak value of the absolute amount of LaOOH was obtained with 4.3 wt% lanthanum loading. The BET surface area decreased dramatically when the lanthanum loading was above 4.3 wt%. In consideration of the results obtained from the catalytic reactions, it could be concluded that LaOOH was the possible active species and high surface area was important for the high catalytic activity.  相似文献   

9.
The oxidant‐free dehydrogenation of n‐pentanol over copper based catalysts was investigated in this paper. The effect of metal modification on the activity and stability of the copper catalyst supported on γ‐Al2O3 and La2O3 (Cu/γ‐Al2O3‐La2O3) was clarified and a Cr modified Cu/Al2O3‐La2O3 (Cu‐Cr/γ‐Al2O3‐La2O3) showed the best catalytic performance. The conversion of n‐pentanol was 70.0% and the selectivity for n‐pentanal increased to 97.1% over Cu‐Cr/γ‐Al2O3‐La2O3. X‐ray diffraction and temperature programmed reduction of H2 indicated that the addition of Cr favors the formation and reduction of the copper oxide, and the dispersion of the active Cu0 species, accounting for the good activity and stability of this catalyst. Furthermore, the lower amount of acidic sites in Cu‐Cr/γ‐Al2O3‐La2O3 is suggested to suppress the dehydration in oxidant‐free dehydrogenation of n‐pentanol, accounting for the higher selectivity for n‐pentanal.  相似文献   

10.
Herein, for the first time, a direct Z‐scheme g‐C3N4/NiFe2O4 nanocomposite photocatalyst was prepared using facile one‐pot hydrothermal method and characterized using XRD, FT‐IR, DRS, PL, SEM, EDS, TEM, HRTEM, XPS, BET and VSM characterized techniques. The result reveals that the NiFe2O4 nanoparticles are loaded on the g‐C3N4 sheets successfully. The photocatalytic activities of the as‐prepared photocatalysts were evaluated for the degradation of methyl orange (MO) under visible light irradiation. It was shown that the photocatalytic activity of the g‐C3N4/NiFe2O4 nanocomposite is about 4.4 and 3 times higher than those of the pristine NiFe2O4 and g‐C3N4 respectively. The enhanced photocatalytic activity could be ascribed to the formation of g‐C3N4/NiFe2O4 direct Z‐scheme photocatalyst, which results in efficient space separation of photogenerated charge carriers. More importantly, the as‐prepared Z‐scheme photocatalyst can be recoverable easily from the solution by an external magnetic field and it shows almost the same activity for three consecutive cycles. Considering the simplicity of preparation method, this work will provide new insights into the design of high‐performance magnetic Z‐scheme photocatalysts for organic contaminate removal.  相似文献   

11.
Synergistic effects of two kinds of rare earth oxides (REOs), neodymium oxide (Nd2O3) or lanthanum oxide (La2O3) on the intumescent flame retardancy of thermoplastic polyolefin (TPO) made by polypropylene/poly (octylene‐co‐ethylene) blends were investigated systemically by various methods. The limiting oxygen index (LOI) of flame retardant TPO (FRTPO) filled by 30 wt% intumescent flame retardants (IFR) composed of ammonium polyphosphate (APP) and pentaerythritol (PER) has been increased from 30 to 32.5 and 33.5 when 0.5 wt% of IFR was substituted by La2O3 and Nd2O3, respectively. Cone calorimetry tests also reveal the existence of synergistic effects. Thermalgravimetric analyses (TGA) demonstrate that the presence of REOs promotes the esterification and carbonization process in low‐temperature range while enhances the thermal stability of IFR and FRTPO in high‐temperature range. X‐ray diffraction (XRD) reveals that the interaction of Nd2O3 with IFR results in the formation of neodymium phosphate (NdP5O14) with high‐thermal stability. Thermal scanning rheological tests show that the presence of REOs increases complex viscosity of FRTPO in the temperature range of 190~300°C so as to suppress melt dripping but decreases the complex viscosity and increases the loss factors tan δ in temperature range of 300~400°C to make the carbonaceous strucuture more flexible and viscous to resist stress, expand better and keep intact. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Binary metal oxides have been deemed as a promising class of electrode materials for high‐performance lithium ion batteries owing to their higher conductivity and electrochemical activity than corresponding monometal oxides. Here, NiFe2O4 nanoplates consisting of nanosized building blocks have been successfully fabricated by a facile, large‐scale NaCl and KCl molten‐salt route, and the changes in the morphology of NiFe2O4 as a function of the molten‐salt amount have been systemically investigated. The results indicate that the molten‐salt amount mainly influences the diameter and thickness of the NiFe2O4 nanoplates as well as the morphology of the nanosized building blocks. Cyclic voltammetry (CV) and galvanostatic charge–discharge measurements have been conducted to evaluate the lithium storage properties of the NiFe2O4 nanoplates prepared with a Ni(NO3)2/Fe(NO3)3/KCl/NaCl molar ratio of 1:2:20:60. A high reversible capacity of 888 mAh g?1 is delivered over 100 cycles at a current density of 100 mA g?1. Even at a current density of 5000 mA g?1, the discharge capacity could still reach 173 mAh g?1. Such excellent electrochemical performances of the NiFe2O4 nanoplates are contributed to the short Li+ diffusion distance of the nanosized building blocks and the synergetic effect of the Ni2+ and Fe3+ ions.  相似文献   

13.
The title compound, poly[bis[diaqualanthanum(III)]‐tris(μ‐1‐benzofuran‐2,3‐dicarboxylato)], [La2(C10H4O5)3(H2O)4]n, was obtained under solvothermal conditions by reacting lanthanum trinitrate hexahydrate with 1‐benzofuran‐2,3‐dicarboxylic acid in a strongly basic environment. It forms an extended two‐dimensional coordination network, wherein every lanthanum ion links to four deprotonated diacid ligands, while two of the latter bridge between adjacent metal cations. The component species are additionally linked to one another by hydrogen bonds. The polymeric arrays are tightly stacked one on top of the other, without incorporating any solvent in the interface zones between them, which are lined with the lipophilic benzofuran residues. This study provides the first example of coordination networking with the aid of the 1‐benzofuran‐2,3‐dicarboxylate ligand.  相似文献   

14.
The title compound, tetrakis(μ‐2,3‐di­methoxy­benzoato)‐κ4O:O′;κ6O,O′:O′‐bis[(2,2′‐bi­pyridine‐N,N′)(2,3‐di­methoxy­benzoato‐O,O′)lanthanum(III)], [La2(2,3‐DMOBA)6(2,2′‐bpy)2], where 2,3‐DMOBA is 2,3‐di­methoxy­benzoate (C9H9O4) and 2,2′‐bpy is 2,2′‐bi­pyridine (C10H8N2), is a dimer with a centre of inversion between the La atoms bridged by four carboxyl­ate ligands. The central La atom is ennea‐coordinated and has a distorted monocapped square‐antiprism geometry.  相似文献   

15.
The sequence of phases occurring during treatment of lanthanum sulfate, La2(SO4)3 and lanthanum oxysulfate, La2O2SO4 in a hydrogen flow is established. The temperature ranges in which homogeneous La2O2S is produced are revealed: when La2(SO4)3 is a precursor, the range is 770–1220 K; in the case of La2O2SO4, the interval is 950–1220 K. The kinetic curves showing the time dependence of the yield of La2O2S is constructed and treated using the Avrami-Erofeev and contracting volume equations. The activation energies of the reactions are determined.  相似文献   

16.
In the present work, CuCr catalysts supported on γ‐Al2O3 are prepared and modified with alkali earth elements by impregnation, characterized by N2 adsorption–desorption, XRD, H2‐TPR (temperature‐programmed reduction by H2), CO2‐TPD and NH3‐TPD (temperature‐programmed desorption of NH3 or CO2), and applied in the synthesis of 3‐methylindole (3‐MI) with a N‐heterocycle from glycerol and aniline in the fixed‐bed reactor. The results show that the introduction of alkali earth elements into the CuCr/Al2O3 catalyst can improve the yield of target 3‐MI in the order of Mg < Ca < Sr < Ba. CuCr‐Ba/Al2O3 gives rise to a high 3‐MI yield of 39.09% and 65.17% in N2 as a carrier gas and 20%H2–N2 mixture gas, respectively. According to catalysts characterization and catalytic tests, the reaction pathway of glycerol cyclization with aniline is proposed, the formation of 3‐MI and 3H‐indol‐3‐yl methanol is hypothesized to be through the aniline cyclization with 2,3‐hydroxypropanal from glycerol dehydrogenation over Cu0 centers and basic sites. The acidic sites mainly play a role on activating aniline, which interacts with glycerol to form 3‐MI or quinoline through cyclization and dehydration.  相似文献   

17.
Design of green, safe, and sustainable process for the synthesis of hydrogen peroxide (H2O2) is a very important subject. Early reported processes, however, require hydrogen (H2) and palladium‐based catalysts. Herein we propose a photocatalytic process for H2O2 synthesis driven by metal‐free catalysts with earth‐abundant water and molecular oxygen (O2) as resources under sunlight irradiation (λ>400 nm). We use graphitic carbon nitride (g‐C3N4) containing electron‐deficient aromatic diimide units as catalysts. Incorporating the diimide units positively shifts the valence‐band potential of the catalysts, while maintaining sufficient conduction‐band potential for O2 reduction. Visible light irradiation of the catalysts in pure water with O2 successfully produces H2O2 by oxidation of water by the photoformed valence‐band holes and selective two‐electron reduction of O2 by the conduction band electrons.  相似文献   

18.
I‐Type La2Si2O7: According to La6[Si4O13][SiO4]2 not a Real Lanthanum Disilicate In attempts to synthesize lanthanum telluride silicate La2Te[SiO4] (from La, TeO2, SiO2 and CsCl, molar ratio: 1 : 1: 1 : 20, 950 °C, 7 d) or fluoride‐rich lanthanum fluoride silicates (from LaF3, La2O3, SiO2 and CsCl, molar ratio: 5 : 2 : 3 : 17, 700 °C, 7 d) in evacuated silica tubes, colourless lath‐shaped single crystals of hitherto unknown I‐type La2Si2O7 (monoclinic, P21/c; a = 726.14(5), b = 2353.2(2), c = 1013.11(8) pm, β = 90.159(7)°) were found in the CsCl‐flux melts. Nevertheless, this new modification of lanthanum disilicate does not contain any discrete disilicate groups [Si2O7]6‐ but formally three of them are dismutated into one catena‐tetrasilicate ([Si4O13]10‐ unit of four vertex‐linked [SiO4]4‐ tetrahedra) and two ortho‐silicate anions (isolated [SiO4]4‐ tetrahedra) according to La6[Si4O13][SiO4]2. This compound can be described as built up of alternating layers of these [SiO4]4‐ and the horseshoe‐shaped [Si4O13]10‐ anions along [010]. Between and within the layers the high‐coordinated La 3+ cations (CN = 9 ‐ 11) are localized. The close structural relationship to the borosilicates M3[BSiO6][SiO4](M = Ce ‐ Eu) is discussed and structural comparisons with other catena‐tetrasilicates are presented.  相似文献   

19.
The title compound, [NaLaMo8O26(C3H7NO)7]n, contains infinite chains of [Mo8O26]4− units supporting di­methyl­form­amide‐coordinated LaIII cations and linked by Na+ cations. The lanthanum center adopts a nine‐coordinate geometry and the Na atom is sandwiched between two β‐[Mo8O26]4− units.  相似文献   

20.
La4B14O27: A Lanthanum ultra‐Oxoborate with a Framework Structure Single crystals of La4B14O27 could be synthesized by the reaction of La2O3, LaCl3 and B2O3 with an access of CsCl as fluxing agent in gastightly sealed platinum ampoules within twenty days at 710 °C and appear as colourless, transparent and waterresistant platelets. The new lanthanum oxoborate La4B14O27 (monoclinic, C2/c; a = 1120.84(9), b = 641.98(6), c = 2537.2(2) pm, β = 100.125(8)°; Z = 4) is built of a three‐dimensional boron‐oxygen framework containing seven crystallographically different boron atoms. Four of these B3+ cations are surrounded by four O2? anions tetrahedrally, whereas the other three have only three oxygen neighbours with nearly plane triangular coordination figures. Three of the [BO4]5? tetrahedra form [B3O9]9? rings by cyclic vertex‐condensation, which are further linked via [BO3]3? units to infinite layers. Two of these layers connect via one [B2O7]8? unit of two corner‐shared [BO4]5? tetrahedra to double layers, which themselves build up a three‐dimensional framework together with chains consisting of two [BO4]5? tetrahedra and one [BO3]3? triangle. One of the two crystallographically independent La3+ cations (La1) is surrounded by ten O2? anions and resides within the oxoborate double layers. (La2)3+ shows a (8+2)‐fold coordination of O2? anions and occupies channels along the [110] direction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号