首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four sampling techniques, solid-phase microextraction (SPME), supercritical fluid extraction (SFE), steam distillation (SD), and solvent extraction (SE), were compared for the analysis of volatile constituents from a traditional Chinese medicine (TCM) of the dried ripe fruit of Fructus Amomi (Sha Ren). A total of 38 compounds were identified by gas chromatography/mass spectrometry. Different SFE and SPME parameters (modifier content, extraction pressure, and temperature for SFE and fibers, extraction temperature, and time for SPME) were studied. The results by SFE and SPME were compared with those obtained by conventional SD and SE methods. The results showed that SFE and SPME are better sample preparation techniques than SD and SE. Due to SFE's requirement for expensive specialized instrumentation, the simplicity, low cost, and speed of SPME make it a more appropriate technique for extraction of volatile constituents in TCMs.  相似文献   

2.
A green, rapid and precise sample pretreatment technique, IL-based UAE(ionic liquid-based ultrasonic-assisted extraction), was coupled with high-performance liquid chromatographic separation to identify the main effective components in Schisandra sphenanthera(S. sphenanthera) and Schisandra chinensis(S. chinensis) including schisantherin A, schisandrin A, and deoxyschizandrin. Four different types of ionic liquids have been investigated, finally[C6MIM] [BF4] was used as the extraction solvent. A powder form of S. sphenanthera and S. chinensis was mixed with the[C6MIM] [BF4] to produce a suspension. This suspension was ultrasonically extracted in a water bath at room temperature. Several of the process parameters were optimized, including the type of ionic liquid used and its volume, the sample amount, the size of the sample particle, the extraction time, etc. HPLC calibration curves were established for all the analytes and proved to be linear(r>0.9999). The lowest detection level for schisandrin A was 0.12 μg/mL, for schisantherin A was 0.08 μg/mL, and for deoxyschizandrin was 0.10 μg/mL. The recoveries of the target compounds were from 74.19% to 109.33%. The standard deviations for detection were generally no more than 6.31%. In contrast to conventional extraction methods, the IL-based UAE did not involve volatile organic volatile solvents, and the analysis time, required sample and solvent volumes were also lower than those of the conventional techniques.  相似文献   

3.
Essential oil was extracted from Artemisia lavandulaefolia DC.by steam distillation(SD) and supercritical-CO2 fluid extraction(SFE),respectively.The constituents of the essentil oils extracted with those two methods were analyzed by gas chromatography-mass spectrometry(GC-MS) and insecticidal activities of the essential oils were evaluated,then the results were compared to assess their biological activity.Thirty-one compounds were identified in the essential oil extracted by SD,and its main components were eucalyptol,α,α,4-trimethyl-3-cyclohexene-1-methanol and so on.Twenty-two compounds were identified for the essential oil extracted by SFE,and its main components were cyclodecene,n-hexadecanoic acid and so on.Six chemical compositions were all contained in the essential oils extracted by the two methods,i.e.,eucalyptol,α,α,4-trimethyl-3-cyclohexene-1-methanol,caryophyllene,[3aS-(3aα,3bβ,4β,7α,7aS)]-octahydro-7-methyl-3-methylene-4-(1-methylethyl)-1H-cyclopenta[1,3]cyclopropa-[1,2]benzene,nerolidol and(-)-Spathulenol.The fumigation toxicity of the essential oil obtained by means of SD to the adults of Sitophilus zeamais is significantly higher than that of the essential oil by means of SFE.The contact toxicity of the essential oil obtained by means of SFE to the adults of S.zeamais is higher than that of the essential oil obtained by means of SD,but the difference is not significant.  相似文献   

4.
Valeriana officinalis var. latifolia is a common medicinal and fragrant plant in China. The plant’s essential oil plays an important role in its sedative and hypnotic action. In this work, supercritical fluid extraction and headspace solid phase micro-extraction, with gas chromatography–mass spectrometry, were used for analysis of the volatile components of the roots of V. officinalis var. latifolia. The results were compared with those obtained by hydrodistillation. Seventy-two compounds were isolated and identified by GC–MS. The results showed that the major volatile components of V. officinalis var. latifolia were significantly different from those of V. officinalis, and varied with different extraction methods. SFE co-extracted high-molecular-weight compounds that do not contribute to the aroma. Hydrodistillation extraction resulted in loss of some highly volatile fragrant components. The conditions (extraction temperature and pressure) used for SFE affected the extraction yield and the composition of the oil.  相似文献   

5.
Supercritical fluid extraction in plant essential and volatile oil analysis   总被引:9,自引:0,他引:9  
The use of supercritical fluids, especially carbon dioxide, in the extraction of plant volatile components has increased during two last decades due to the expected advantages of the supercritical extraction process. Supercritical fluid extraction (SFE) is a rapid, selective and convenient method for sample preparation prior to the analysis of compounds in the volatile product of plant matrices. Also, SFE is a simple, inexpensive, fast, effective and virtually solvent-free sample pretreatment technique. This review provides a detailed and updated discussion of the developments, modes and applications of SFE in the isolation of essential oils from plant matrices. SFE is usually performed with pure or modified carbon dioxide, which facilitates off-line collection of extracts and on-line coupling with other analytical methods such as gas, liquid and supercritical fluid chromatography. In this review, we showed that a number of factors influence extraction yields, these being solubility of the solute in the fluid, diffusion through the matrix and collection process. Finally, SFE has been compared with conventional extraction methods in terms of selectivity, rapidity, cleanliness and possibility of manipulating the composition of the extract.  相似文献   

6.
Schisandra chinensis is a traditional Chinese medicine, which has played an important role in the field of medicine and food. In this study, ultra-high-performance liquid chromatography quadrupole-orbitrap-mass spectrometry was used to rapidly classify and identify the chemical compositions. Note that 32, 28, and 30 kinds of compounds were successfully identified from northern Schisandra chinensis, vinegar-processed Schisandra chinensis, and wine-processed Schisandra chinensis, respectively. The cleavage patterns of various components including lignans, organic acids, flavonoids, and terpenoids were summarized, and the effects of different processing methods on Schisandra chinensis were analyzed through chemical composition. This method realized the rapid classification and identification of raw Schisandra chinensis and two different processed products, and provided references for improving the traditional processing methods, strengthening quality control, and ensuring safe clinical application.  相似文献   

7.
柽柳实中挥发油和脂肪酸分析   总被引:1,自引:1,他引:0  
首次研究了维药细穗柽柳(Tamarix leptostachys Bunge)实中挥发油和脂肪酸的化学成分。 分别采用药典中的挥发油提取法和索式取提法提取柽柳实中的挥发油和脂肪酸,使用气质联用技术获取总离子流图,各色谱峰相应的质谱图经过NIST2011标准谱库检索定性,并采用峰面积归一化法进行定量分析,计算各成分的相对百分含量。 两种方法分别鉴定出48种挥发油和19种脂肪酸。 挥发油主要成分为芳香类化合物(43.71%)、芳香性醛酮类(20.58%)、脂肪酸类(13.03%)、酯类(17.36%)和醇类(4.19%)等。 脂肪酸主要成分为棕榈酸(35.61%)、亚油酸(27.26%)和油酸(11.33%)等,其中不饱和脂肪酸含量占总脂肪酸含量的38.65%。 维药细穗柽柳实中富含丰富的挥发油和不饱和脂肪酸,具有很好的开发利用价值。  相似文献   

8.
Yu Y  Yang B  Zhou T  Zhang H  Shao L  Duan G 《Annali di chimica》2007,97(10):1075-1084
In this paper, microwave distillation and solid-phase microextraction coupled with gas chromatography-mass spectrometry (MD-SPME/GC-MS) was developed for the analysis of essential components in safflower. Using the MD-SPME technique, the isolation, extraction and concentration of volatile compounds in safflower were carried out in only one step. Some parameters affecting the extraction efficiency such as SPME fiber coating, microwave power, irradiation time and the volume of water added were optimized. The optimal experiment parameters obtained were: 65 microm CW/DVB SPME fiber, a microwave power of 400 W, an irradiation time of 3 min and water volume of 1 mL. The proposed method has been compared with conventional steam distillation (SD) for extraction of essential oil compounds in safflower. Using MD-SPME followed by GC-MS, 32 compounds in safflower were separated and identified, which mainly included paeonol, alpha-asarone, beta-asarone, 1-methyl-4-(2-propenyl)-benzene and diethenyl-benzene, whereas only 18 compounds were separated and identified by conventional SD followed by GC-MS. The relative standard deviation (R.S.D.) values of less than 10% show that the proposed method has good reproducibility. The results show that MD-SPME/GC-MS is a simple, rapid, effective method for the analysis of volatile oil components in safflower.  相似文献   

9.
Supercritical fluid was used to extract volatile components from the rhizoma of Atractylode lancea (A. lancea). An orthogonal array design (OAD), L9 (3)4, was employed as a chemometric method for the optimization of the supercritical fluid extraction (SFE) of volatile compounds from the herbal medicine. Four parameters, namely, pressure, temperature, dynamic extraction time, and flow rate of CO2, were studied and optimized by a three‐level OAD in which the interactions between the parameters were neglected. These compounds were identified according to their retention times and mass spectra by GC–MS. A total of 30 compounds of SFE extracts were identified. Atractylon (8.63%), hinesol (1.44%), β‐eudesmol (6.64%), elemol (0.42%), and atractydin (13.92%) were the major sesquiterpenes identified in A. lancea SFE extracts.  相似文献   

10.
Hydrodistillation (HD), simultaneous distillation solvent extraction (SDE), microwave-assisted hydrodistillation (MWHD), and supercritical fluid (CO2) extraction (SFE) were employed to isolate volatile secondary metabolites from fresh leaves and stems of Colombian Lippia alba (Mill.) N.E. Brown. Kovàts indices, mass spectra or standard compounds were used to identify around 40 components in the various volatile fractions. Carvone (40-57%) was the most abundant component, followed by limonene (24-37%), bicyclosesquiphellandrene (5-22%), piperitenone (1-2%), piperitone (ca. 1.0%), and beta-bourbonene (0.6-1.5%), in the HD, SDE, MWHD, and SFE volatile fractions. Static headspace (S-HS), simultaneous purge and trap in solvent (CH2Cl2) (P&T), and headspace solid-phase microextraction (HS-SPME) were used to sample volatiles from fresh L. alba stems and leaves. The main components isolated from the headspace of the fresh plant material were limonene (27-77%), carvone (14-30%), piperitone (0.3-0.5%), piperitenone (ca. 0.4%), and beta-bourbonene (0.5-6.5%). The in vitro antioxidant activity of L. alba essential oil, obtained by hydrodistillation was evaluated by determination of hexanal, the main carbonyl compound released by linoleic acid subjected to peroxidation (1 mm Fe2+, 37 degrees C, 12 h), and by quantification of this acid as its methyl ester. Under the same conditions, L. alba HD-essential oil and Vitamin E exhibited similar antioxidant effects.  相似文献   

11.
Three different methods: hydrodistillation (HD), focused microwave-assisted hydrodistillation (FMAHD) and supercritical fluid extraction (SFE) have been applied, for the first time together, for the extraction of volatile metabolites of the brown alga Dictyopteris membranacea. The oils obtained were analyzed by GC-MS (identification and determination of metabolites) and the results were compared. The main chemical classes of compounds identified were C11 hydrocarbons for HD method, sesquiterpenes for FMAHD method and sulphur compounds for SFE method.  相似文献   

12.
The volatile components of Cnidium monnieri were obtained by supercritical fluid extraction (SFE) and analyzed by GC‐MS (identification and determination of metabolites). The compounds were identified according to their retention times and mass spectra. The effects of different parameters, such as extraction pressure, temperature, dynamic extraction time, flow rate of CO2, on the SFE of C. monnieri extracts were investigated. A total of 14 compounds of SFE extracts were identified. Osthole (69.52%), bornyl acetate (10.03%), α‐pinene (4.71%), and imperatorin (2.42%) were the major compounds identified in C. monnieri SFE extracts. The quantitation of osthole and imperatorin were then accomplished. The linear calibration ranges were all 5–1000 μg/mL for osthole and imperatorin by GC‐MS analysis. The recovery of osthole and imperatorin were in the range 96.5–101.8%. The LODs for osthole and imperatorin were 1.0 and 0.6 μg/mL, respectively.  相似文献   

13.
A GC-MS fingerprinting technique based on the essential oil components has been developed for the discrimination of chuanxiong against Chinese Angelica (Angelica sinensis (Oliv.) Diels) or other herbs with similar compositions. The analytical performance of four different extraction methods for the separation of essential oil components have been compared and these include: ultrasound-assisted extraction (UAE), supercritical fluid extraction (SFE), Soxhlet extraction (SHE) and hydro-distillation extraction (HDE). The results showed that UAE was the most effective extraction method, and the operational parameters of UAE were optimized. 3-Butylphthalide, Z-butylidenephthalide, senkyunolide I, senkyunolide H, E-butylidenephthalide, senkyunolide A, neocnidilide, Z-ligustilide and E-ligustilide were tentatively identified in chromatograms of chuanxiong based on their GC-EI-MS data. Similarity coefficient calculations based on correlation methods have been performed on the GC-MS fingerprints. Using an authentic standard Chuanxiong as the reference, the similarity coefficients between the standard and all other chuanxiong samples ranged from 0.90 to 1.0 (with 1.0 being the perfect match), which as a group can be readily separated from the Angelica samples for which the similarity index against the chuanxiong standard ranged from 0.75 to 0.77. Conversely, when an authentic Angelica standard was used as the reference, the respective similarity coefficients fall in the range of 0.70-0.75 and 0.98-1.00 for the chuanxiong and Angelica sample groups. Our results thus demonstrate that the fingerprinting technique developed in the study can indeed discriminate the two herbs with high reliability.  相似文献   

14.
邱琴  凌建亚  丁玉萍  常宏文  王江  刘廷礼 《色谱》2005,23(6):646-650
采用超临界CO2萃取法(SFE)与水蒸气蒸馏法(SD)从荆芥穗中提取挥发油。采用SE-54毛细管柱进行分析,用气相色谱-质谱法对挥发油中各种化学成分进行鉴定,用归一化法测定各组分的含量。色谱条件:SE-54毛细管柱 (30 m×0.25 mm i.d.,0.25 μm),柱温50 ℃(3 min)5 ℃/min180 ℃(2 min)10 ℃/min260 ℃(50 min);分流进样,分流比1∶50;进样口温度280 ℃。在采用超临界CO2萃取法提取的挥发油中共鉴定出54种成分,其主要成分为长叶薄荷酮、薄荷酮、亚油酸氯化物等;在水蒸气蒸馏法提取的挥发油中共鉴定出39种成分,其主要成分为长叶薄荷酮、薄荷酮、柠檬烯等。超临界法较水蒸气法更加稳定可靠,重现性好,适用于中药挥发油的化学成分分析。  相似文献   

15.
Volatile flavour components of tea flowers (Camellia sinensis) were isolated by two methods viz. simultaneous distillation extraction (SDE), supercritical fluid extraction (SFE), analyzed by GC and GC/MS and compared with headspace analysis (HS). The composition of the volatile components extracted by the three methods differed considerably. In SFE, phenylethanol (14.7%), linalool (7.9%), (E)-linalool oxide furanoid (3.5%), epoxy linalool (1.6%), geraniol (2.3%) and hotrienol (1.5%) were major components. m-Xylene (2.6%), (E)-linalool oxide pyranoid (5.4%), p-myrcene (5.2%), alpha-cadinol (4.3%) and methyl palmitate (2.9%) were major compounds isolated by SDE. 3-hexenol (2.1%) (E)-4,8-dimethyl-1,3,7-nonatriene (20.9%) and linalool (35.1%) are major components in headspace analysis. Acetophenone and pheromone germacrene D is detected in tea flowers by all the methods studied. Floral, fresh and fruity odour of tea flowers is retained by SFE as there is very little loss of heat sensitive volatiles in SFE. The flavour isolated from SFE has superior quality compared to SDE.  相似文献   

16.
Supercritical fluid extraction (SFE) of the volatile oil from Thymus vulgaris L. aerial flowering parts was performed under different conditions of pressure, temperature, mean particle size and CO2 flow rate and the correspondent yield and composition were compared with those of the essential oil isolated by hydrodistillation (HD). Both the oils were analyzed by GC and GC‐MS and 52 components were identified. The main volatile components obtained were p‐cymene (10.0–42.6% for SFE and 28.9–34.8% for HD), γ‐terpinene (0.8–6.9% for SFE and 5.1–7.0% for HD), linalool (2.3–5.3% for SFE and 2.8–3.1% for HD), thymol (19.5–40.8% for SFE and 35.4–41.6% for HD), and carvacrol (1.4–3.1% for SFE and 2.6–3.1% for HD). The main difference was found to be the relative percentage of thymoquinone (not found in the essential oil) and carvacryl methyl ether (1.0–1.2% for HD versus t?0.4 for SFE) which can explain the higher antioxidant activity, assessed by Rancimat test, of the SFE volatiles when compared with HD. Thymoquinone is considered a strong antioxidant compound.  相似文献   

17.
The volatile components of Angelica dahurica were obtained by supercritical fluid extraction (SFE) method. These oils obtained were analyzed by GC-MS (identification and determination of metabolites). The compounds were identified according to their retention indices and mass spectra (electron impact (EI), 70 eV). The effects of different parameters, such as pressure, temperature, flow rate of CO(2), and the amount of modifier, on the SFE of A. dahurica oil were investigated. A total of 50 compounds of SFE extracts were identified. Phellopterin (PO), isoimperatorin (IO), imperatorin (IM), alloimperatorin (AM), byakangelicin, isooxypeucedanin, and pimpinellin were the major coumarin compounds identified in A. dahurica SFE extracts. The quantitations of PO, IO, IM, and AM were then accomplished. The calibration curves showed good linearity (R(2) >0.99) in the concentration ranges tested. The recoveries were higher than 85%, with RSDs less than 10%. The GC-MS method was successfully validated and applied to the quantitation of A. dahurica.  相似文献   

18.
Different from the west medicine, the therapeutic effect of the traditional Chinese medicine is usually based on multifarious essential components or the combination of them instead of only one component. In this paper, a novel supercritical fluid extraction (SFE) method has been developed for extracting tanshinones (dihydrotanshinone I, cryptotanshinone, tanshinone I, and tanshinone II(A)) from Danshen, the dried root of Salvia miltiorrhiza. Various experimental conditions were investigated to optimize the SFE. Under the appropriate conditions, extracting at 40 MPa, and 50 degrees C and with CO(2) flow rate of 25 L/h for 1 h, SFE can achieve a better yield as well as the recoveries of the tanshinones than the conventional extraction using methanol. Moreover, the target compounds were analyzed by HPLC with a C(18) RP column by gradient elution using ACN and water as mobile phase at a flow rate of 1.0 mL/min and with UV detection at 270 nm. Four calibration equations were then established and good linear relationships were shown (r(2) >0.999) in the investigated concentration range. The recoveries, measured at three concentration levels, varied from 97.2 to 103.8%. The method provided in this article could be applied as an improved quality control method for Danshen products.  相似文献   

19.
As a part of our search for environmentally friendly solvents to extract the active components of medicinal plants, two sampling techniques, supercritical fluid extraction (SFE) using CO(2) and solid-phase microextraction (SPME) were compared for their efficacy in the analysis of volatiles rhizome components emitted from the medicinal herbs Angelica gigas NAKAI (Korean danggui), Angelica sinensis (Chinese danggui), and Angelica acutiloba (Japanese danggui). A total of 54 compounds released from all of these varieties of Angelica rhizomes were separated and identified by gas chromatography-mass spectrometry (GC-MS). The composition of supercritical extracts from these plants was very different from the solid-phase microextraction products. More compounds were detected by SPME-GC-MS (41) than by SFE-GC-MS (17). The results of these analyses suggest that SFE may be useful for detecting the main components, decursinol angelate and decursin in Korean danggui, and butylidene dihydro-phthalide in both Chinese and Japanese danggui, whereas the results for SPME did not. The SFE method required specialized instrumentation, required little time to prepare the sample, and had a small sample size and no organic solvent. In sum, these results suggest that SFE is useful for extracting the volatile main components of danggui cultivars. Its simplicity, low cost and speed may allow SPME to increase the recovery of volatile components in general without disturbing the main components of the plant.  相似文献   

20.
Steam distillation (SD), simultaneous distillation and extraction (SDE) and headspace co-distillation (HCD) were compared here for their effectiveness in the extraction of volatile compounds from tobacco. The different grades of aged flue-cured tobacco leaves extracted by the three methods respectively were analyzed using GC-MS. Mass spectra or authentic compounds were used to identify around 408 components in various volatile fractions. On the one hand, the qualitative comparison showed that more compounds were detected in HCD extract (391 components) than in SDE extract (377 components), and the approximately quantitative analysis showed that the total amount of volatile components in SDE extract (445.48 microg/g) was much more than that in HCD extract (315.72 microg/g). But on the other hand, HCD was the most efficient for nearly all the highly volatile compounds among the three methods. As to low-volatile compounds such as lactones, long chain aldehydes, ketones, alcohols, and esters, more was detected in SDE extract than in HCD extract. The SD method (322 components, total amount 228.42 microg/g) was the lowest sensitive to all compounds except semi-volatile fatty acids among the three methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号