首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 609 毫秒
1.
基于求线性代数方程组的共轭梯度法的思想,建立一种求Lyapunov矩阵方程的双反对称解的迭代算法,对任意给定的初始双反对称矩阵,算法能够在有限步迭代计算后得到矩阵方程的极小范数双反对称解,同时在上述解集中也可得出指定矩阵的最佳逼近双反称矩阵.数值算例表明,迭代算法是有效的.  相似文献   

2.
给出了一种计算周期三对角矩阵行列式和逆矩阵的新递推算法,它们的运算复杂度分别为O(n)和O(n2),该算法是文献[5]和[6]中相关算法的拓广.  相似文献   

3.
在共轭梯度思想的启发下,本文给出了迭代算法求解约束矩阵方程AXB+CXD=F的对称解及其最佳逼近.应用迭代算法,矩阵方程AXB+CXD=F的相容性可以在迭代过程中自动判断.当矩阵方程AXB+CXD=F有对称解时,在有限的误差范围内,对任意初始对称矩阵X1,运用迭代算法,经过有限步可得到矩阵方程的对称解;选取合适的初始迭代矩阵,还可以迭代出极小范数对称解.而且,对任意给定的矩阵X0,矩阵方程AXB+CXD=F的最佳逼近对称解可以通过迭代求解新的矩阵方程A(X)B+C(X)D=(F)的极小范数对称解得到.文中的数值例子证实了该算法的有效性.  相似文献   

4.
杨家稳  孙合明 《数学杂志》2015,35(5):1275-1286
本文研究了Sylvester矩阵方程AXB+CXTD=E自反(或反自反)最佳逼近解.利用所提出的共轭方向法的迭代算法,获得了一个结果:不论矩阵方程AXB+CXTD=E是否相容,对于任给初始自反(或反自反)矩阵X1,在有限迭代步内,该算法都能够计算出该矩阵方程的自反(或反自反)最佳逼近解.最后,三个数值例子验证了该算法是有效性的.  相似文献   

5.
有效求解连续的Sylvester矩阵方程对于科学和工程计算有着重要的应用价值,因此该文提出了一种可行的分裂迭代算法.该算法的核心思想是外迭代将连续Sylvester矩阵方程的系数矩阵分裂为对称矩阵和反对称矩阵,内迭代求解复对称矩阵方程.相较于传统的分裂算法,该文所提出的分裂迭代算法有效地避免了最优迭代参数的选取,并利用了复对称方程组高效求解的特点,进而提高了算法的易实现性、易操作性.此外,从理论层面进一步证明了该分裂迭代算法的收敛性.最后,通过数值算例表明分裂迭代算法具有良好的收敛性和鲁棒性,同时也证实了分裂迭代算法的收敛性很大程度依赖于内迭代格式的选取.  相似文献   

6.
研究一类双矩阵变量Riccati矩阵方程(R-ME)对称解的数值计算问题.运用牛顿算法求R-ME的对称解时,会导出求双矩阵变量线性矩阵方程的对称解或者对称最小二乘解的问题,采用修正共轭梯度法解决导出的线性矩阵方程约束解问题,可建立求R-ME的对称解的迭代算法.数值算例表明,迭代算法是有效的.  相似文献   

7.
本文研究了在控制理论和随机滤波等领域中遇到的一类含高次逆幂的矩阵方程的等价矩阵方程对称解的数值计算问题.采用牛顿算法求等价矩阵方程的对称解,并采用修正共轭梯度法求由牛顿算法每一步迭代计算导出的线性矩阵方程的对称解或者对称最小二乘解,建立了求这类矩阵方程对称解的双迭代算法,数值算例验证了双迭代算法是有效的.  相似文献   

8.
实对称矩阵的特征值问题,无论是低阶稠密矩阵的全部特征值问题,或高阶稀疏矩阵的部分特征值问题,都已有许多有效的计算方法,迄今最重要的一些成果已总结在[5]中。本文利用规范矩阵的一些重要性质将对于Hermite矩阵(特别是对弥矩阵)特征值问题的一些有效算法推广到规范矩阵的特征值问题,由于对复规范阵的推广是简单的,而且实际上常遇到的是实矩阵(这时常要求只用实运算),因此我们着重讨论实规范矩阵的特征值问题。  相似文献   

9.
刘莉  王伟 《工科数学》2012,(6):67-73
基于共轭梯度法的思想,通过特殊的变形,建立了一类求矩阵方程AXA^T+BYB^T=C的双对称最小二乘解的迭代算法.对任意的初始双对称矩阵.在没有舍人误差的情况下,经过有限步迭代得到它的双对称最小二乘解;在选取特殊的初始双对称矩阵时,能得到它的的极小范数双对称最小二乘解.另外,给定任意矩阵,利用此方法可得到它的最佳逼近双对称解,数值例子表明,这种方法是有效的.  相似文献   

10.
1引言考虑线性代数方程组A_x=b,A∈R~(n×n)非奇异,x,b∈R~n(1)的求解.当系数矩阵是大型稀疏的正定可对称化矩阵,文[1,2]讨论了一类预对称共轭梯度算法(LRSCG算法是其中之一),这类算法的实质是利用非对称的系数矩阵可对称化的性质,并结合共轭梯度法而构造的一种预处理的共轭梯度法[12,16,17].但非对称的系数  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号