首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Reaction of two equivalents of n-BuLi with sterically demanding amine-bis(phenol) compounds, H(2)O(2)NN'(R) (Me(2)NCH(2)CH(2)N{CH(2)-3,5-R(2)-C(6)H(2)OH}(2); R = t-Bu or t-Pe (tert-pentyl)) yields isolable lithium complexes, Li(2)(O(2)NN'(R)), in good yields. Upon reaction with one equivalent of LnCl(3)(THF)(x), the lithium salts afford rare earth amine-phenolate chloride complexes in good yields, Ln(O(2)NN'(R))Cl(THF); Ln = Y, Yb, Ho, Gd, Sm, Pr. Crystals of Y(O(2)NN'(t-Bu))Cl(THF), 1, and Sm(O(2)NN'(t-Bu))Cl(DME), 2, suitable for single crystal X-ray crystallographic analysis were obtained. In contrast to previously reported [{Gd(O(2)NN'(t-Pe))(THF)(micro-Cl)}(2)] and related La and Sm complexes, these species are monomeric. 1 contains Y in a distorted octahedral environment bonded to two amine, two phenolate, one THF and one chloride donor. 2 contains Sm in a distorted capped trigonal prismatic environment bonded to two amine, two phenolate, two DME oxygens and one chloride donor. The Ln(O(2)NN'(t-Pe))Cl(THF) complexes were active initators for the controlled ring-opening polymerization of epsilon-caprolactone with a tendency to form low molecular weight cyclic polyesters (M(n) 3000-5000). The conversion rates, although slower than related amido and alkyl species, were different for monomeric and dimeric initiators. The size of the metal centre also affected the conversions and the molecular weights achieved.  相似文献   

2.
The monoborohydride lanthanide complex [Sm(Cp*)2(BH4)(thf)] (1a) (Cp* = eta-C5Me5), has been successfully used for the controlled ring-opening polymerization of epsilon-caprolactone (epsilon-CL). The organometallic samarium(III) initiator 1 a produces, in quantitative yields, alpha,omega-dihydroxytelechelic poly(epsilon-caprolactone) displaying relatively narrow polydispersity indices (<1.3) within a short period of time (30 min). The polymers have been characterized by 1H and 13C NMR, SEC, and MALDI-TOF MS analyses. Use of the single-site initiator 1 a allows a better understanding of the polymerization mechanism, in particular with the identification of the intermediate compound [Sm(Cp*)2(BH4)(epsilon-CL)] (1b). Indeed, one molecule of epsilon-CL initially displaces the coordinated THF in 1 a to give 1 b. Then, epsilon-CL opening (through cleavage of the cyclic ester oxygen-acyl bond) and insertion into the Sm--HBH3 bond followed by reduction of the carbonyl function by the BH3 end-group ligand, leads to the samarium alkoxyborane derivative [Sm(Cp*)2[O(CH2)6O(BH2)]] (2). This compound subsequently initiates the polymerization of epsilon-CL through a coordination-insertion mechanism. Finally, upon hydrolysis, alpha,omega-dihydroxypoly(epsilon-caprolactone), HO(CH2)5C(O)[O(CH2)5C(O)]nO(CH2)6OH (4) is recovered. The stereoelectronic contribution of the two Cp* ligands appears to slow down the polymerization and to limit transesterification reactions.  相似文献   

3.
[Ln[N(SiMe3)2]2(THF)2](Ln = Sm, Yb) reacts with 1 equiv. of carbon-bridged biphenols, 2,2'-methylene-bis(6-tert-butyl-4-methylphenol)(L1H2) or 2,2'-ethylidene-bis(4,6-di-tert-butylphenol)(L2H2), in toluene to give the novel aryloxide lanthanide(II) complexes [[LnL1(THF)n]2](Ln = Sm, n = 3 (1); Ln = Yb, n = 2 (2)) and [[LnL2(THF)3]2](Ln = Sm (5); Ln = Yb (6)) in quantitative yield, respectively. Addition of 2 equiv. of hexamethylphosphoric triamide (HMPA) to a tetrahydrofuran (THF) solution of 1, 2 and 5 affords the corresponding HMPA-coordinated complexes, [[LnL1(THF)m(HMPA)n]2(THF)y](Ln = Sm, n = 2, m = 0, y = 2 (3); Ln = Yb, m = 1, n = 1, y = 6 (4)) and [[SmL2(HMPA)2]2](7) in excellent yields. The single-crystal structural analyses of 3, 4 and 7 revealed that these aryloxide lanthanide(II) complexes are dimeric with two Ln-O bridges. The coordination geometry of each lanthanide metal can be best described as a distorted trigonal bipyramid. Complexes 1-3, 5 and 7 can catalyze the ring-opening polymerization of epsilon-caprolactone (epsilon-CL), and 1-3, along with 5 show moderate activity for the ring-opening polymerization of 2,2-dimethyltrimethylene carbonate (DTC) and the copolymerization of epsilon-CL and DTC to give random copolymers with high molecular weights and relatively narrow molecular weight distributions..  相似文献   

4.
Metathesis reaction of LLnCl(THF)(2) [L = (Me(3)SiNC(C(6)H(5))N)(2)(CH(2))(3)] with NaBH(4) in a 1 : 1.5 molar ratio in THF (THF = tetrahydrofuran) at 60 °C afforded the monoborohydride LLn(BH(4))(DME) [Ln = Y (1), Nd (2), Sm(3) and Yb(4)] crystallized from DME solution (DME = dimethoxyethane). Crystal structure analyses revealed 1-4 are monomers, in which each metal is ligated by one L ligand, one η(3)-BH(4) group and one DME molecule in a trigonal bipyramid geometry. Complexes 1-4 were found to be very active single-site initiators for the controlled ring opening polymerization of ε-caprolactone (ε-CL) and L-lactide (L-LA) as judged by relatively narrow molecular weight distributions (M(w)/M(n): 1.34-1.50) and experimental values M(n)(exp) were in good agreement with theoretic values M(n)(theo). The highest activity and the best control over the molecular weight for both monomers were found for the system with 2. These monoborohydride complexes can also initiate the ring opening polymerization of rac-LA to gave heterotactically enriched polyLA with Pr (heterotactic enrichment) values in a range of 0.69-0.85 depending on the lanthanide metals and the most effective heterotactic enrichment (Pr) was found for 1 (Pr = 0.85). Moreover, complex 1 initiated the polymerization of rac-LA in a living fashion.  相似文献   

5.
The reaction of YbI(2) with KTp(Me2) gives (Tp(Me2))YbI(THF)(2) (1-Yb) as a thermally unstable product. Use of the more hindered KTp(tBu,Me) gave (Tp(tBu,Me))LnI(THF)(n) (Ln = Sm, n = 2, 2-Sm; Ln = Yb, n = 1, 2-Yb). The crystal structures of both these compounds are reported. Adducts with neutral ligands such as pyridines and isonitriles can be prepared and the crystal structures of [(Tp(tBu,Me))YbIL(n)] (L = CN(t)Bu, n = 1; L = 3,5-lutidine, n = 2) are described. 2-Sm can be oxidized using AgBPh(4) to give [(Tp(tBu,Me))SmI(THF)(2)]BPh(4). Compounds 2-Sm and 2-Yb are useful starting materials for the preparation of heteroleptic compounds by metathesis with appropriate potassium reagents. The preparations and characterization of the hydrocarbyls (Tp(tBu,Me))Ln{CH(SiMe(3))(2)} (Ln = Sm, 5-Sm; Yb, 5-Yb) and [(Tp(tBu,Me))Ln{CH(2)(SiMe(3))}(THF)] (Ln = Yb, 6a-Yb) and the triethylborohydrides [(Tp(tBu,Me))Ln(HBEt(3))(THF)(n)] (Ln = Sm, n = 0, 7-Sm; Yb, n = 1, 7-Yb) are reported, as well as the crystal structures of 5-Sm and 5-Yb, and the THF adducts 6a-Yb and [(Tp(tBu,Me))Sm{CH(SiMe(3))(2)}(THF)], 5a-Sm.  相似文献   

6.
The reaction of Ln(BH(4))(3)(THF)(3) or LnCl(3)(THF)(3) with 1 equiv of KCp*' ligand (Cp' = C(5)Me(4)n-Pr) afforded the new monocyclopentadienyl complexes Cp*'LnX(2)(THF)(n) (X = BH(4), Ln = Sm, n = 1, 1a, Ln = Nd, n = 2, 1b; X = Cl, Ln = Sm, n = 1, 3a) and [Cp*'LnX(2)](n') (X = BH(4), n' = 6, Ln = Sm, 2a, Ln = Nd, 2b; X = Cl, Ln = Nd, 4b). All these compounds were characterized by elemental analysis and (1)H NMR. Crystals of mixed borohydrido/chloro-bridged [Cp*'(6)Ln(6)(BH(4))(12-x))Cl(x)(THF)(n')] (x = 10, n' = 4, Ln = Sm, 2a', Ln = Nd, 2b'; x = 5, n = 2, Ln = Sm, 2a' ') were also isolated. Compounds 2a, 2b, 2a', 2b', and 2a' were structurally characterized; they all exhibit a hexameric structure in the solid state containing the [Cp*(3)Ln(3)X(5)(THF)] building block. The easy clustering of THF adducts first isolated is illustrative of the well-known bridging ability of the BH(4) group. Hexameric 2a was found to be unstable in the presence of THF vapors; this may be correlated to the opening of unsymmetrical borohydride bridges observed in the molecular structure.  相似文献   

7.
The mechanisms of polymerization of epsilon-caprolactone (CL) initiated by either the rare-earth hydride [Cp2Eu(H)] or the borohydrides [Cp2Eu(BH4)] or [(N2NN')Eu(BH4)] were studied at the DFT level (Cp=eta5-C5H5; N2NN'=(2-C5H4N)CH2(CH2CH2NMe)2). For all compounds the reaction proceeds in two steps: a hydride transfer from the rare earth initiator to the carbonyl carbon of the lactone, followed by ring-opening of the monomer. In the last step a difference is observed between the hydride and borohydride complexes, because for the latter the ring-opening is induced by an additional B-H bond cleavage leading to a terminal--CH2OBH2 group. This corresponds to the reduction by BH3 of the carbonyl group of CL. Upon reaction of [Cp2Eu(H)] with CL, the alkoxy-aldehyde complex produced, [Cp2Eu(O(CH2)5C(O)H)], is the first-formed initiating species. In contrast, for the reaction of CL with the borohydride complexes [(Lx)Eu(BH4)] (Lx=Cp2 or N2NN'), an aliphatic alkoxide with a terminal--CH2OBH2 group, [(Lx)Eu(O(CH2)6OBH2)] is formed and subsequently propagates the polymerization. The present DFT investigations are fully compatible with previously reported mechanistic studies of experimental systems.  相似文献   

8.
近年来,生物降解材料受到了越来越广泛的关注.聚对二氧环己酮(PPDO)具有优异的生物相容性、生物可吸收性、生物降解性和良好的柔韧性,目前已被成功地应用于医用材料领域.而在环境材料如薄膜、板材、发泡材料等领域也具有广泛的应用前景.PPDO作为一种新材料,虽然早在20世纪70年代就已经合成出来,  相似文献   

9.
A series of Werner complexes featuring the tridentate ligand smif, that is, 1,3-di-(2-pyridyl)-2-azaallyl, have been prepared. Syntheses of (smif)(2)M (1-M; M = Cr, Fe) were accomplished via treatment of M(NSiMe(3))(2)(THF)(n) (M = Cr, n = 2; Fe, n = 1) with 2 equiv of (smif)H (1,3-di-(2-pyridyl)-2-azapropene); ortho-methylated ((o)Mesmif)(2)Fe (2-Fe) and ((o)Me(2)smif)(2)Fe (3-Fe) were similarly prepared. Metatheses of MX(2) variants with 2 equiv of Li(smif) or Na(smif) generated 1-M (M = Cr, Mn, Fe, Co, Ni, Zn, Ru). Metathesis of VCl(3)(THF)(3) with 2 Li(smif) with a reducing equiv of Na/Hg present afforded 1-V, while 2 Na(smif) and IrCl(3)(THF)(3) in the presence of NaBPh(4) gave [(smif)(2)Ir]BPh(4) (1(+)-Ir). Electrochemical experiments led to the oxidation of 1-M (M = Cr, Mn, Co) by AgOTf to produce [(smif)(2)M]OTf (1(+)-M), and treatment of Rh(2)(O(2)CCF(3))(4) with 4 equiv Na(smif) and 2 AgOTf gave 1(+)-Rh. Characterizations by NMR, EPR, and UV-vis spectroscopies, SQUID magnetometry, X-ray crystallography, and DFT calculations are presented. Intraligand (IL) transitions derived from promotion of electrons from the unique CNC(nb) (nonbonding) orbitals of the smif backbone to ligand π*-type orbitals are intense (ε ≈ 10,000-60,000 M(-1)cm(-1)), dominate the UV-visible spectra, and give crystals a metallic-looking appearance. High energy K-edge spectroscopy was used to show that the smif in 1-Cr is redox noninnocent, and its electron configuration is best described as (smif(-))(smif(2-))Cr(III); an unusual S = 1 EPR spectrum (X-band) was obtained for 1-Cr.  相似文献   

10.
Polymerization of methyl methacrylate (MMA) initiated by the rare-earth borohydride complexes [Ln(BH(4))(3)(thf)(3)] (Ln=Nd, Sm) or [Sm(BH(4))(Cp*)(2)(thf)] (Cp*=eta-C(5)Me(5)) proceeds at ambient temperature to give rather syndiotactic poly(methyl methacrylate) (PMMA) with molar masses M(n) higher than expected and quite broad molar mass distributions, which is consistent with a poor initiation efficiency. The polymerization of MMA was investigated by performing density functional theory (DFT) calculations on an eta-C(5)H(5) model metallocene and showed that in the reaction of [Eu(BH(4))(Cp)(2)] with MMA the borate [Eu(Cp)(2){(OBH(3))(OMe)C=C(Me)(2)}] (e-2) complex, which forms via the enolate [Eu(Cp)(2){O(OMe)C=C(Me)(2)}] (e), is calculated to be exergonic and is the most likely of all of the possible products. This product is favored because the reaction that leads to the formation of carboxylate [Eu(Cp)(2){OOC-C(Me)(=CH(2))}] (f) is thermodynamically favorable, but kinetically disfavored, and both of the potential products from a Markovnikov [Eu(Cp)(2){O(OMe)C-CH(Me)(CH(2)BH(3))}] (g) or anti-Markovnikov [Eu(Cp)(2){O(OMe)C-C(Me(2))(BH(3))}] (h) hydroboration reaction are also kinetically inaccessible. Similar computational results were obtained for the reaction of [Eu(BH(4))(3)] and MMA with all of the products showing extra stabilization. The DFT calculations performed by using [Eu(Cp)(2)(H)] to model the mechanism previously reported for the polymerization of MMA initiated by [Sm(Cp*)(2)(H)](2) confirmed the favorable exergonic formation of the intermediate [Eu(Cp)(2){O(OMe)C=C(Me)(2)}] (e') as the kinetic product, this enolate species ultimately leads to the formation of PMMA as experimentally observed. Replacing H by BH(4) thus prevents the 1,4-addition of the [Eu(BH(4))(Cp)(2)] borohydride ligand to the first incoming MMA molecule and instead favors the formation of the borate complex e-2. This intermediate is the somewhat active species in the polymerization of MMA initiated by the borohydride precursors [Ln(BH(4))(3)(thf)(3)] or [Sm(BH(4))(Cp*)(2)(thf)].  相似文献   

11.
Kui SC  Li HW  Lee HK 《Inorganic chemistry》2003,42(9):2824-2826
Homoleptic Ce(III) and Nd(III) triamides [LnL(3)] [Ln = Ce(1) or Nd(2)] and the heterobimetallic amide-alkoxide derivatives [LnL(2)(mu-OBu(t))2M(tmeda)] [Ln = Ce, M = Na (3); Ln = Nd, M = Na (4); Ln = Nd, M = K (5)] supported by the bulky [N(SiBu(t)Me2)(2-C(5)H(3)N-6-Me)]- ligand (L-) have been successfully synthesized and characterized. Complexes 1-3 and 5 show a high activity toward the ring-opening polymerization of epsilon-caprolactone.  相似文献   

12.
We describe the synthesis, structure, and reactivity of low-coordinate Al-alkyl and -alkoxide cationic complexes incorporating the sterically bulky aminophenolate bidentate ligand 6-(CH(2)NMe(2))-2-CPh(3)-4-Me-C(6)H(2)O- (N,O). These complexes are derived from the ionization of neutral dialkyl Al complexes (N,O)Al2) (1 a, R=Me; 1 b, R=iBu), readily obtained by alkane elimination between AlR3 and the corresponding aminophenol ligand, with the alkyl abstracting reagents B(C(6)F(5))3 and [Ph(3)C][B(C(6)F(5))4]. The reactions of 1 a,b with B(C(6)F(5))3 yield complicated mixtures or decomposition products, however the ionization of the Al-diisobutyl derivative 1 b with [Ph(3)C][B(C(6)F(5))4] affords a stable four-coordinate Al-PhBr cationic adduct [(N,O)Al(iBu)(PhBr)]+ (3+), as deduced from elemental analysis data. Complex 3+ readily coordinates Lewis bases such as THF to form the corresponding adduct [(N,O)Al(iBu)(thf)]+ (4+), and also rapidly chain-transfers with 1-hexene to yield the three-coordinate Al-hexyl cation [(N,O)Al-hexyl]+ (5+). Both cations 3+ and 5+ slowly dimerize to form unprecedented organoaluminum dications [(N,O)AlR+]2 (3'++, R=iBu; 5'++, R=hexyl) as deduced from X-ray crystallographic analysis. Cation 3+ reacts quickly with iPrOH to form a stable Lewis acid/base adduct [(N,O)Al(iBu)(HOiPr)]+ (6+), which constitutes the first X-ray characterized adduct between an Al-alkyl complex and a simple ROH. The Al-ROH proton in 6+ is readily abstracted by NMe(2)Ph to form the neutral isopropoxide Al complex [(N,O)Al(iBu)(OiPr)] (7). Upon reaction with THF, cation 6+ undergoes an intramolecular proton transfer to yield the ammonium Al-THF complex [(eta1-HN,O)Al(iBu)(OiPr)(thf)] (8 b+), in which the aminophenolate is eta1-coordinated to the Al center. Cation 8 b+ can then be converted to the desired Al-alkoxide derivative [(N,O)Al(OiPr)(thf)](+) (10+), by an intramolecular protonolysis reaction, as confirmed by X-ray crystallography. The synthesized Al-alkyl cations form robust four-coordinate adducts in the presence of cyclic esters such as epsilon-caprolactone and (D,L)-lactide, but no insertion chemistry occurs, illustrating the poor ability of the Al-R+ moiety to ring-open. In contrast, the Al-alkoxide cation 10+ polymerizes epsilon-caprolactone in a controlled manner with excellent activity, but is inactive in the polymerization of (D,L)-lactide and L-lactide. Control experiments with L-lactide show that cation 10+ ring-opens L-lactide to yield a robust five-coordinated Al--lactate cation [(N,O)Al(eta2-L-lactate-OiPr)(thf)]+ (13+), derived from a monoinsertion of L-lactide into the Al--OiPr bond of 10+, that does not further react. Cation 13+ may be regarded as a structurally characterized close mimic of the initial intermediate in the ring opening polymerization (ROP), of lactides by [{LX}M(OR)(L)] (where LX-=bidentate monoanionic ligand and L=labile ligand) metal complex initiators.  相似文献   

13.
The reaction of Sm[N(TMS)(2)](2)(THF)(2) with H(2)L (L = 1,4-bis(2-hydroxy-3-tert-butyl-5-methyl-benzyl)-piperazidine) afforded [SmL(HMPA)(2)](4)·8THF 2 upon treatment with 2 equivalents of HMPA (hexamethyl phosphoric triamide). X-ray crystallographic analysis of 2 reveals a tetrametallic macrocyclic structure, which represents the first example of a crystal structure of a Sm(II) complex stabilized by heteroatom bridged bis(phenolate) ligands. Reduction of carbodiimides RNCNR (R = (i)Pr and Cy) by [SmL](2)(THF) 1, which was formed in situ by the reaction of Sm[N(TMS)(2)](2)(THF)(2) with H(2)L in THF, yielded the Sm(III) complex with an oxalamidinate ligand [LSm{(N(i)Pr)(2)CC(N(i)Pr)(2)}SmL]·THF 3 for (i)PrNCN(i)Pr and the Sm(III) complex with a diamidocarbene ligand [LSm(μ-CyNCNCy)SmL]·5.5THF 4 for CyNCNCy.  相似文献   

14.
The adducts [[(Me(3)Si)(2){Me(2)P(BH(3))}C]K(L)(n)](m) [L = THF, n = 0.5, m = infinity (2a); L = tmeda (2b), pmdeta (2c), n = 1, m = 2] may be synthesised by treatment of solvent-free [[(Me(3)Si)(2){Me(2)P(BH(3))}C]K](infinity) (2) with the corresponding Lewis base (tmeda = N,N,N',N'-tetramethylethylenediamine; pmdeta = N,N,N',N',N'-pentamethyldiethylenetriamine). X-Ray crystallography reveals that, whereas 2 crystallises with a complex 2-dimensional sheet structure, 2a crystallises as a ribbon-type one-dimensional polymer and both 2b and 2c crystallise as dimers. The corresponding complex with 12-crown-4, [K(12-crown-4)(2)][(Me(3)Si)(2){Me(2)P(BH(3))}C] (2d) crystallises as a separated ion pair. The complexes [[(Me(3)Si)(2){Me(2)P(BH(3))}C]M(pmdeta)](n) [M = Na, n = 1 (6); M = Rb, n = 2 (7)] may be synthesised by treatment of [(Me(3)Si)(2){Me(2)P(BH(3))}C]M with pmdeta. Whereas crystallises as a discrete monomer, compound 7 crystallises as a dimer. Compounds 2, 2a-2d, 6, 7 and the corresponding caesium derivative [[(Me(3)Si)(2){Me(2)P(BH(3))}C]Cs(pmdeta)](2) () provide an opportunity to consider the influence of the ionic radius of the metal and the nature of the co-ligands on the structures of alkali metal complexes of a phosphine-borane-stabilised carbanion.  相似文献   

15.
Five new heteroleptic lanthanide(III) phenolate compounds have been synthesised in high yield, four via a transamination reaction between Ln(N(SiMe(3))2)3 and two equivalents of the phenol, HOC(6)H(2)(2,4-Bu(t))-6-CH(2)N(Me)CH(2)CH(2)NMe(2) [corrected] (LH) in thf {L(2)LnN(SiMe(3))2 where Ln = La (1); Nd (2); Sm (3); Yb (4)}. The fifth compound, [L(2)La][BPh(4)] 5 was formed by conversion of 1 by treatment with one equivalent of [Et(3)NH][BPh(4)] in toluene. Compound 3 was subjected to a single-crystal X-ray analysis and revealed a five-coordinate, distorted trigonal bipyramidal samarium(III) metal centre where each phenolate ligand is bidentate coordinating through the phenolate oxygen and nitrogen yielding six-membered chelate rings. Compound 1 exhibited fluxional behaviour in C(4)D(8)O solution which was temperature dependent. All five compounds were assessed as catalyst precursors towards the ring-opening polymerisation of both L-lactide and epsilon-caprolactone. These polymerisation studies revealed that catalysts containing larger lanthanide metals were more efficacious than those with smaller lanthanide metals. Furthermore, replacement of the [N(SiMe(3))2] initiating group in 1 with [BPh(4)] in 5 reduced catalytic activity by this compound. Detailed kinetics analysis of the ring-opening polymerisation of L-lactide by compound 1, the most efficacious catalyst precursor analysed in this study, revealed the following rate law: -d[LA]/dt = k[LA](2)[1](1) which is second order in lactide and first order in catalyst. End-group analysis by ESI mass spectrometry revealed the presence of phenolate end-groups and lactide cycles, the latter formed by intra-molecular, intrachain transesterification.  相似文献   

16.
Poly(trimethylene carbonate) (PTMC) was synthesized through ring-opening polymerization by using a rare-earth borohydride initiator, [Sm(BH(4))(3)(thf)(3)]. This initiator shows a high activity to give high-molar-mass PTMCs with molar-mass distributions ranging from 1.2 to 1.4, and with a regular structure void of ether linkages. The polymers were characterized by (1)H and (13)C NMR spectroscopy, (1)H-(1)H COSY, (1)H-(13)C HMQC NMR spectroscopy, size-exclusion chromatography (SEC), viscosimetry, and MALDI-TOF MS analyses. A coordination-insertion mechanism was established based on detailed NMR characterizations, especially of the polymer chain end-functions. The monomer initially coordinates the samarium to give [Sm(BH(4))(3)(tmc)(3)], 1. The monomer then opens up through cleavage of the cyclic ester oxygen--acyl bond and inserts into the Sm--HBH(3) bond resulting in an alkoxide complex, [Sm{O(CH(2))(3)OC(O)HBH(3)}(3)], 2, or [Sm{O(CH(2))(3)OC(O)H}(3)], 2', which then propagates the polymerization of TMC to give the active polymer [Sm({O(CH(2))(3)OC(O)}(n)O(CH(2))(3)OC(O)HBH(3))(3)], 3 or [Sm(O(CH(2))(3)OC(O){O(CH(2))(3)OC(O)}(n)O(CH(2))(3)OC(O)H)(3)], 3'. Finally, acidic hydrolysis of 3 or 3' gives HO(CH(2))(3)OC(O)[O(CH(2))(3)OC(O)](n)O(CH(2))(3)OC(O)H, 4. This novel alpha-hydroxy,omega-formatetelechelic PTMC represents the first example of a formate-terminated polycarbonate. TMC and epsilon-caprolactone (CL) were copolymerized to afford both random PTMC-co-PCL and block PTMC-b-PCL copolymers that were characterized by (1)H NMR spectroscopy, SEC, and differential scanning calorimetry (DSC). The structure of the block copolymers depends on the order of addition of monomers: if CL is introduced first, dihydroxytelechelic HO-PTMC-b-PCL-OH polymers are formed, whereas introduction of TMC first or simultaneous addition of comonomers leads to hydroxyformatetelechelic HC(O)O-PTMC-b-PCL-OH analogues.  相似文献   

17.
Li D  Parkin S  Wang G  Yee GT  Holmes SM 《Inorganic chemistry》2006,45(7):2773-2775
Treatment of mer-VCl3(THF)3 with KTp [Tp = hydridotris(3,5-dimethylpyrazol-1-yl)borate], followed by [NEt4]CN in acetonitrile, affords [NEt4][(Tp)V(III)(CN)3].H2O (1.H2O); aerobic oxidation affords [NEt4][(Tp)V(IV)(O)(CN)2] (2). Subsequent treatment of 2 with Mn(II)(OTf)2 (OTf = trifluoromethanesulfonate) and 2,2'-bipyridine affords {[(Tp)V(O)(CN)2]2[Mn(II)(bipy)2]2[OTf]2}.2MeCN (3). Magnetic measurements indicate that 1-3 exhibit S = 1, (1/2), and 4 spin ground states, respectively.  相似文献   

18.
Reaction of the cyanoruthenate anions [Ru(bpym)(CN)4]2- and [[Ru(CN)4]2(mu-bpym)]4- (bpym = 2,2'-bipyrimidine) with lanthanide(III) salts resulted in the crystallization of coordination networks based on Ru-CN-Ln bridges. Four types of structure were obtained: [Ru(bpym)(CN)4][Ln(NO3)(H2O)5] (Ru-Ln; Ln = Sm, Nd, and Gd) are one-dimensional helical chains; [Ru(bpym)(CN)4]2[Ln(NO3)(H2O)2][Ln(NO3)(0.5)(H2O)(5.5)](NO3)(0.5).5.5H2O (Ru-Ln; Ln = Er and Yb) are two-dimensional sheets containing cross-linked chains based on Ru2Ln2(mu-CN)4 diamond units, which are linked into one-dimensional chains via shared Ru atoms; [[Ru(CN)4]2(mu-bpym)][Ln(NO3)(H2O)5]2.3H2O (Ru2-Ln; Ln = Nd and Sm) are one-dimensional ladders with parallel Ln-NC-Ru-CN-Ln-NC strands connected by the bipyrimidine "cross pieces" acting as rungs on the ladder; and [[Ru(CN)4]2(mu-bpym)][Ln(H2O)6](0.5)[Ln(H2O)4](NO3)(0.5).nH2O (Ru2-Ln; Ln = Eu, Gd, and Yb; n = 8.5, 8.5, and 8, respectively) are three-dimensional networks in which two-dimensional sheets of Ru2Ln2(mu-CN)4 diamonds are connected via cyanide bridges to Ln(III) ions between the layers. Whereas Ru-Gd shows weak triplet metal-to-ligand charge-transfer (3MLCT) luminescence in the solid state from the Ru-bipyrimidine chromophore, in Ru-Nd, Ru-Er, and Ru-Yb, the Ru-based emission is quenched, and all of these show, instead, sensitized lanthanide-based near-IR luminescence following a Ru --> Ln energy transfer. Similarly, Ru2-Nd and Ru2-Yb show lanthanide-based near-IR emission following excitation of the Ru-bipyrimidine chromophore. Time-resolved luminescence measurements suggest that the Ru --> Ln energy-transfer rate is faster (when Ln = Yb and Er) than in related complexes based on the [Ru(bipy)(CN)4]2- chromophore, because the lower energy of the Ru-bpym 3MLCT provides better spectroscopic overlap with the low-energy f-f states of Yb(III) and Er(III). In every case, the lanthanide-based luminescence is relatively short-lived as a result of the CN oscillations in the lattice.  相似文献   

19.
The reaction of Ln(NO(3))(3).aq with K(3)[Fe(CN)(6)] or K(3)[Co(CN)(6)] and 2,2'-bipyridine in water led to five one-dimensional complexes: trans-[M(CN)(4)(mu-CN)(2)Ln(H(2)O)(4) (bpy)](n)().XnH(2)O.1.5nbpy (M = Fe(3+) or Co(3+); Ln = Sm(3+), Gd(3+), or Yb(3+); X = 4 or 5). The structures for [Fe(3)(+)-Sm(3+)] (1), [Fe(3)(+)-Gd(3+)] (2), [Fe(3)(+)-Yb(3+)] (3), [Co(3)(+)-Gd(3+)] (4), and [Co(3)(+)-Yb(3+)] (5) have been solved; they crystallize in the triclinic space P1 and are isomorphous. The [Fe(3+)-Sm(3+)] complex is a ferrimagnet, its magnetic studies suggesting the onset of weak ferromagnetic 3-D ordering at 3.5 K. The [Fe(3+)-Gd(3+)] interaction is weakly antiferromagnetic. The isotropic nature of Gd(3+) allowed us to evaluate the exchange interaction (J = 0.77 cm(-)(1)).  相似文献   

20.
Peng H  Zhang Z  Qi R  Yao Y  Zhang Y  Shen Q  Cheng Y 《Inorganic chemistry》2008,47(21):9828-9835
The synthesis and reactivity of a series of sodium and rare-earth metal complexes stabilized by a dianionic N-aryloxo-functionalized beta-ketoiminate ligand were presented. The reaction of acetylacetone with 1 equiv of 2-amino-4-methylphenol in absolute ethanol gave the compound 4-(2-hydroxy-5-methylphenyl)imino-2-pentanone (LH2, 1) in high yield. Compound 1 reacted with excess NaH to afford the novel sodium cluster [LNa2(THF)2]4 (2) in good isolated yield. Structure determination revealed that complex 2 has the 22-vertex cage structure. Reactions of complex 2 with anhydrous LnCl3 in a 1:4 molar ratio, after workup, gave the desired lanthanide chlorides [LLnCl(DME)]2 [Ln = Y (3), Yb (4), Tb (5)] as dimers. A further study revealed that complexes 3-5 are inert for chlorine substitution reactions. (ArO)3Ln(THF) (ArO = 2,6-Bu(t)2-4-MeC6H2O) reacted with compound 1 in a 1:1 molar ratio in tetrahydrofuran (THF), after workup, to give the desired rare-earth metal aryloxides as dimers [LLn(OAr)(THF)]2 [Ln = Nd (6), Sm (7), Yb (8), Y (9)] in high isolated yields. All of these complexes are well characterized, and the definitive molecular structures of complexes 2 and 4-6 were determined. It was found that complexes 6-9 can be used as efficient initiators for L-lactide polymerization, and the ionic radii of the central metals have a significant effect on the catalytic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号