首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 562 毫秒
1.
通过γ-氯丙基三甲氧基硅烷的偶联, 将聚乙烯亚胺(PEI)偶合接枝在硅胶微粒表面, 制得了对脲酸有强吸附性能的复合型医用吸附材料PEI/SiO2. 静态吸附实验结果表明, 凭借强烈的氢键相互作用, 硅胶表面的聚胺大分子PEI对脲酸的互变异构体三羟基嘌呤具有很强的吸附能力, 等温吸附满足Freundlich吸附方程, 饱和吸附量可达84.9 mg/g; 介质的pH值对吸附作用有很大的影响, 在中性溶液中(pH=6~7), 复合吸附材料PEI/SiO2对脲酸具有强吸附能力, 而在酸性与碱性溶液中吸附能力都较弱; 温度对吸附性能也有影响, 升高温度吸附量增大.  相似文献   

2.
通过γ-氯丙基三甲氧基硅烷的偶联, 将聚乙烯亚胺(PEI)偶合接枝在硅胶微粒表面, 制得了对脲酸有强吸附性能的复合型医用吸附材料PEI/SiO2. 静态吸附实验结果表明, 凭借强烈的氢键相互作用, 硅胶表面的聚胺大分子PEI对脲酸的互变异构体三羟基嘌呤具有很强的吸附能力, 等温吸附满足Freundlich吸附方程, 饱和吸附量可达84.9 mg/g; 介质的pH值对吸附作用有很大的影响, 在中性溶液中(pH=6~7), 复合吸附材料PEI/SiO2对脲酸具有强吸附能力, 而在酸性与碱性溶液中吸附能力都较弱; 温度对吸附性能也有影响, 升高温度吸附量增大.  相似文献   

3.
胺基化PGMA交联微球对胆红素的吸附机理   总被引:2,自引:0,他引:2  
通过胺基与环氧键之间的开环反应, 用己二胺及多乙烯多胺等小分子胺化试剂对聚甲基丙烯酸缩水甘油酯(PGMA)交联微球进行了化学改性, 制得了胺基化的PGMA交联微球, 研究了该功能微球对胆红素的吸附特性, 考察了胺化试剂的分子结构、介质pH值、离子强度及温度等因素对其吸附性能的影响, 较深入地研究了吸附机理. 实验结果表明, 胺基化微球对胆红素具有强吸附作用, 吸附容量可达17.80 mg·g-1, 等温吸附服从Freundlich方程. 胺基化微球与胆红素分子之间的作用力以静电相互作用为主, 同时也存在氢键作用与疏水相互作用. 在pH 值为6 的介质中二者之间的静电作用最强, 胆红素吸附容量最高. 高离子强度不利于静电相互作用, 盐度增大使吸附容量减小. 温度升高有利于疏水相互作用而不利于氢键作用, 两种作用中占优势者主导温度对吸附容量的影响. 用己二胺改性的微球, 由于疏水相互作用的强化以及较长连接臂导致较小的空间位阻, 使其对胆红素的吸附能力明显高于多乙烯多胺改性的微球.  相似文献   

4.
纳米羟基磷灰石制备及其对溶液中苯酚吸附的优化设计   总被引:3,自引:0,他引:3  
采用化学沉淀法制备得到纳米羟基磷灰石(n-HAp)粉体,研究了n-HAp粉体对水溶液中苯酚的吸附性能,并初步探讨了其在粉体上的吸附机理,在低浓度(5~30mg/L)时的吸附符合Freundlich等温吸附模型。实验结果表明,n-HAp粉体对苯酚具有较好的吸附效果,2h可基本达到吸附平衡。利用正交设计实验探讨了粉体煅烧温度、吸附温度、吸附时间、溶液pH等因素对吸附效果的影响。正交实验结果统计分析表明,各种因素对吸附的影响程度依次为:溶液pH>煅烧温度>振荡温度>振荡时间。pH对吸附性能的影响最明显,强酸和强碱环境能有效提高n-HAp对苯酚的吸附量。  相似文献   

5.
复合型螯合吸附材料PEI/SiO2对铜离子吸附性能的研究   总被引:2,自引:0,他引:2  
通过γ-氯丙基三甲氧基硅烷的媒介, 将聚乙烯亚胺(PEI)偶联接枝到硅胶微粒表面, 制备了复合型螯合吸附材料PEI/SiO2;研究了PEI/SiO2对Cu2 的吸附性能. 复合型螯合吸附材料PEI/SiO2对Cu2 具有强的螯合吸附能力;等温吸附数据符合Langmuir方程, 且吸附量随温度升高而增大;pH对吸附量有很大的影响, pH 7时, 吸附量最高.  相似文献   

6.
以乙二醇二甲基丙烯酸酯(EGDMA)为交联剂,采用悬浮聚合法制备了平均粒径为100 μm的交联聚甲基丙烯酸缩水甘油酯(CPGMA)微球,然后通过胺基与环氧键之间的开环反应,将聚乙烯亚胺(PEI)偶合接枝在微球表面,制得了表面接枝PEI的功能微球PEI-CPGMA.研究了功能微球对胆红素的吸附性能,考察了接枝度、介质pH、离子强度等因素对微球吸附性能的影响.静态吸附实验结果表明:功能微球对胆红素具有强吸附能力,等温吸附满足Freundlich吸附方程,饱和吸附量可达14.1 mg/g;介质的pH对微球吸附性能有很大的影响,在近中性(pH=6)溶液中,接枝微球对胆红素的吸附能力最强,而在酸性与碱性溶液中吸附能力都比较弱;离子强度对吸附作用表现出微弱的增效作用;微球表面PEI的接枝度越高,吸附能力越强.  相似文献   

7.
氧化叔胺树脂的合成及其对苯酚的吸附性能研究   总被引:6,自引:0,他引:6  
将D301树脂的叔胺基氧化,合成了大孔交联氧化叔胺树脂.比较D301树脂与氧化叔胺树脂对正己烷溶液中和水溶液苯酚的吸附性能,发现氧化叔胺树脂对苯酚的吸附量比D301树脂的有明显的增加.为弄清吸附量增加的原因,根据氧化叔胺树脂对正己烷溶液中苯酚的吸附等温线,利用热力学函数关系计算了等量吸附焓、吸附Gibbs自由能和吸附熵,发现叔胺树脂氧化后,与苯酚的相互作用和吸附的自发倾向增强,但吸附过程仍为氢键吸附.  相似文献   

8.
银改性硅藻土材料捕集烯烃的研究   总被引:6,自引:0,他引:6  
银改性硅藻土作为烯烃捕集材料已用于多维气相色谱分析汽油组分,烯烃捕集容量与硅藻土的比表面积和AgNO3负载量有关。采用X射线衍射(XRD)测定不同载银量的材料中晶相AgNO3的衍射强度,得到AgNO3在硅藻土表面单分子层最大分散量。实验结果与密置单层模型计算的AgNO3最大分散量接近,与色谱法测定结果相吻合。热分析结果表明:捕集材料在使用过程中具有良好的稳定性;吸附的烯烃可以定量回收。  相似文献   

9.
制备了平均粒径为180μm的甲基丙烯酸β-羟乙酯(HEMA)与N-乙烯基吡咯烷酮(NVP)交联共聚物微球(HEMA/NVP),使用3,5-二硝基苯甲酰氯(DNBC)对其进行了化学改性,制得了表面键合有大量3,5-二硝基苯甲酸酯基(DNBZ)的功能微球DNBZ-HEMA/NVP;采用红外光谱(FTIR)与化学分析法对其化学结构及组成进行了表征;重点研究了功能微球DNBZ-HEMA/NVP对肌酐的吸附特性与吸附机理.静态吸附实验表明,DNBZ-HEMA/NVP对肌酐具有强的吸附作用,交联微球HEMA/NVP经DNBC化学改性后,对肌酐的吸附容量提高了20倍;DNBZ-HEMA/NVP对肌酐的吸附性能受介质pH值及盐度的影响很大;当pH值较小或较大时,吸附容量都较低,pH=8.5时,吸附容量最大;介质的盐度越大,吸附容量越小.研究结果表明,DNBZ-HEMA/NVP对肌酐的吸附属化学吸附,而且是静电相互作用驱动下的化学吸附.  相似文献   

10.
以紫外吸收光谱和荧光发射光谱为手段,研究了阳离子单体丙烯酰氧乙基三甲基氯化铵(DAC)与牛血清白蛋白(BSA)之间的相互作用。采用表面引发接枝聚合法制备了接枝微粒SiO2-g-PDAC,探索研究了接枝大分子PDAC与BSA之间的相互作用及作用机理。研究结果表明:在水溶液中,单体DAC与BSA之间可产生强静电相互作用,凭借此强次价键力,单体DAC与BSA可形成主-客体复合物,且在中性溶液中,单体DAC与BSA之间的静电相互作用最强。接枝大分子PDAC与BSA之间也具有强静电相互作用,接枝微粒SiO2-g-PDAC对BSA可产生强吸附作用。当介质的pH在BSA的等电点(4.7)附近时,接枝微粒对BSA的吸附容量最大;升高温度不利于主-客体之间的静电相互作用,接枝微粒对BSA的吸附容量随温度升高而降低。  相似文献   

11.
王小梅 《应用化学》2007,24(11):1322-1326
采用二甲胺为功能化试剂,化学修饰氯甲基化苯乙烯-二乙烯基苯共聚物合成了大孔交联聚(N-对乙烯基苄基二甲胺)树脂,测得树脂的氯含量由4.2mmol/g降低到0.24mmol/g,树脂的弱碱交换量为4.0mmol/g,说明氯甲基化苯乙烯-二乙烯基苯共聚物发生胺化反应完全。在水溶液中,测定了大孔交联聚(N-对乙烯基苄基二甲胺)树脂对苯酚的吸附等温线,发现吸附平衡数据符合Freundlich等温吸附方程,相关系数大于0.99。计算得到在吸附量为15、20和25mg/g时,等量吸附焓在-20.81~-30.74kJ/mol范围内,吸附自由能和吸附熵均小于0,说明吸附过程中存在氢键作用,吸附是自发、混乱度变小的过程。比较树脂对水溶液中苯酚、对硝基苯酚和对硝基甲苯的吸附性能以及树脂对水、环己烷、乙醇和乙酸乙酯溶液中苯酚的吸附性能,进一步说明大孔交联聚(N-对乙烯基苄基二甲胺)树脂对水溶液中苯酚的吸附是基于疏水作用和氢键作用协同的机理。  相似文献   

12.
Hydroxyethyl cellulose and its hydrophobically modified derivatives are widely used in many industrial areas such as pharmaceuticals, cosmetics, textiles, paint and mineral industries. However, the interaction mechanisms of these biopolymers and solids have not been established. In this work, the interaction mechanism and conformation of hydrophobically modified ethyl(hydroxyethyl) cellulose (C(14)-EHEC) have been investigated using spectroscopic, AFM and allied techniques. Comparison was made with corresponding unmodified analogue in order to investigate the effects of the hydrophobic modification. Electrokinetic studies showed that polysaccharides adsorption decreased the negative zeta potential of talc but did not reverse the charge. EHEC adsorption on talc was not found to be affected significantly by changes in solution conditions such as pH and ionic strength, ruling out electrostatic force as the controlling factor. However, HM-EHEC adsorption was found to increase markedly with increase in ionic strength from 0.1 to 1 suggesting a role for the hydrophobic force in this adsorption process. Fluorescence spectroscopic studies conducted to investigate the role of hydrophobic bonding using pyrene probe showed no evidence of the formation of hydrophobic domains at talc-aqueous interface. Urea, a hydrogen bond breaker, reduced the adsorption of HM-EHEC on talc markedly. In FTIR study, the changes in the infrared bands, associated with the CO stretch coupled to the CC stretch and OH deformation, were significant and therefore support strong hydrogen bonding of HM-EHEC on the solid surface. Moreover, Langmuir modeling of the adsorption isotherms suggests hydrogen bonding to be a major force for the adsorption of EHEC and C(14)-EHEC on solid since the adsorption free energies of these polymers were close to that for hydrogen bond formation. All of the above results suggest that the main driving force for EHEC adsorption on talc is hydrogen bonding rather than electrostatic interaction or hydrophobic force. For hydrophobically modified C(14)-EHEC, hydrophobic force plays a synergetic role in adsorption along with hydrogen bonding. From computer modeling and AFM imaging, it is proposed that C(0)-EHEC and C(14)-EHEC adsorb flat on talc with ethylene oxide side chains and hydrophobic groups protruding out from the surface into bulk water phase.  相似文献   

13.
Exfoliated graphene particles stabilised by the cationic polyelectrolyte polyethyleneimine (PEI) were used in conjunction with an anionic polyelectrolyte, poly(acrylic acid), to construct multilayers using the layer-by-layer technique on a silica substrate. In the first adsorption step, the surface excess of the cationic graphene was dependent on the overall charge on the nanoparticle which in turn can be tuned through modifying solution pH as PEI has weakly ionisable charged amine groups. The adsorbed amount onto the silica surface increased as the solution pH increased. Subsequently, a layer of PAA was adsorbed on top of the cationic graphene through electrostatic interaction. The multilayer could be assembled through this alternate deposition, with the influence of solution conditions investigated. The pH of the adsorbing solutions was the chief determinant of the overall adsorbed amounts, with more mass added at the elevated pH of 9 in comparison with pH 4. Atomic force microscopy confirmed that the graphene particles were adsorbed to the silica interface and that the surface coverage of the disc-like nanoparticles was complete after the deposition of five graphene-polyelectrolyte bi-layers. Furthermore, the graphene nanoparticles themselves could be modified through the consecutive addition of the oppositely charged polymers. A multilayered assembly of negatively charged graphene sheets modified with a bi-layer of PEI and PAA was also deposited on a silica surface with adsorbed PEI.  相似文献   

14.
Carboxymethyl cellulose (CMC) is a polysaccharide which is widely used in many industrial sectors including food, textiles, paper, adhesives, paints, pharmaceutics, cosmetics and mineral processing. It is a natural organic polymer that is non-toxic and biodegradable. These properties make it ideal for industrial applications. However, a general lack of understanding of the interaction mechanism between the polysaccharides and solid surfaces has hindered the application of this polymer. In this work, adsorption of CMC at the solid-liquid interface is investigated using adsorption and electrophoretic mobility measurements, FTIR, fluorescence spectroscopy, AFM and molecular modeling. CMC adsorption on talc was found to be affected significantly by changes in solution conditions such as pH and ionic strength, which indicates the important role of electrostatic force in adsorption. The pH effect on adsorption was further proven by AFM imaging. Electrokinetic studies showed that the adsorption of CMC on talc changed its isoelectric point. Further, molecular modeling suggests a helical structure of CMC in solution while it is found to adsorb flat on the solid surface to allow its OH groups to be in contact with the surface. Fluorescence spectroscopy studies conducted to investigate the role of hydrophobic bonding using pyrene probe showed no evidence of the formation of hydrophobic domains at talc-aqueous interface. Urea, a hydrogen bond breaker, markedly reduced the adsorption of CMC on talc, supports hydrogen bonding as an important factor. In FTIR study, the changes to the infrared bands, associated with the CO stretch coupled to the CC stretch and OH deformation, were significant and this further supports the strong hydrogen bonding of CMC to the solid surface. In addition, Langmuir modeling of the adsorption isotherm suggests hydrogen bonding to be a dominant force for polysaccharide adsorption since the adsorption free energy of this polymer was close to that for hydrogen bond formation. All of the above results suggest that the main driving forces for CMC adsorption on talc are a combination of electrostatic interaction and hydrogen bonding rather than hydrophobic force.  相似文献   

15.
This study concerns the design of protein-resistant polymer adsorbed layers for the control of surface binding of biospecific recognition entities. Polymer surface layers were prepared using the adsorption of poly(allylamine hydrochloride) (PAH), poly(l-lysine) (PL), and branched and linear polyethyleneimine (PEI) and further modified by the covalent attachment of biotin for specific avidin attachment. The adsorption of PAH, PL, and PEI on silicon substrates was studied as a function of pH and ionic strength using ellipsometry. Average dry layer thicknesses of approximately 10, approximately 5, approximately 9, and approximately 3 A (+/-1 A) were obtained when polymer adsorption occurred from solutions at pH 9.5 that contained 0.5 M NaCl for PAH, PL, branched PEI, and linear PEI, respectively. These polymers showed significant differences in their efficiency to suppress nonspecific avidin adsorption. At low ionic strength, avidin adsorption occurred on all polymer-coated surfaces at basic pH values, despite the same positive electrostatic charge for protein globules and the surface. Though the net electrostatic repulsion between avidin molecules and branched PEI was efficiently screened in a protein solution of pH 7 and 0.15 M NaCl, branched-PEI coatings of high molecular weight were unique in their ability to provide avidin-resistant surfaces as a result of steric hindrance from the branched architecture of adsorbed polymer chains. All polymers studied were effective in suppressing avidin adsorption at pH 3 as a result of protonation of the avidin surface functional groups at this pH. Branched-PEI-coated surfaces were also effective for the suppression of smaller positively charged proteins such as lysozyme and ribonuclease A at pH 7 and 0.15 M NaCl. They were also resistant to the adsorption of negatively charged proteins such as BSA and fibrinogen at pH 7 and 0.75 M NaCl. Furthermore, by using PEI-modified protein-repellent surfaces, selective binding of avidin was achieved to surface-bound silver nanoparticles, which should provide a promising application for the label-free detection of biological species using surface-enhanced Raman scattering (SERS).  相似文献   

16.
1. INTRODUCTION Adsorption capacity and selectivity are improved when some ion exchange groups or hydrogen bonding acceptor or/and donors are introduced into common polymeric adsorbents [1~5]. R. F. Shi et al have synthesized a series of bifunctional ads…  相似文献   

17.
大孔交联聚(对乙烯基苄基苯基醚)树脂对苯酚的吸附机理   总被引:1,自引:0,他引:1  
黄健涵  徐满才  黄可龙  刘素琴  罗琼 《化学学报》2007,65(17):1907-1910
由氯甲基化聚苯乙烯合成了大孔交联聚(对乙烯基苄基苯基醚)树脂(简称为苯基醚树脂), 测定了其对正己烷和水中苯酚的吸附等温线, 计算了吸附焓. 同时, 比较了聚(对乙烯基苄甲醚)、苯基醚树脂、聚(对乙烯基苄基对硝基苯基醚)和聚(对乙烯基苄基对甲基苯基醚)对正己烷中苯酚的吸附性能以及氯甲基化聚苯乙烯和苯基醚树脂对水中苯酚、2,3,5-三甲基苯酚和对硝基甲苯的吸附性能. 结果表明, 苯基醚树脂是通过氢键吸附正己烷溶液中苯酚的, 而其对水中苯酚的吸附是基于氢键和疏水作用的协同.  相似文献   

18.
Adsorption of organic molecules on silica surface   总被引:4,自引:0,他引:4  
The adsorption behaviour of various organic adsorbates on silica surface is reviewed. Most of the structural information on silica is obtained from IR spectral data and from the characteristics of water present at the silica surface. Silica surface is generally embedded with hydroxy groups and ethereal linkages, and hence considered to have a negative charged surface prone to adsorption of electron deficient species. Adsorption isotherms of the adsorbates delineate the nature of binding of the adsorbate with silica. Aromatic compounds are found to involve the pi-cloud in hydrogen bonding with silanol OH group during adsorption. Cationic and nonionic surfactants adsorb on silica surface involving hydrogen bonding. Sometimes, a polar part of the surfactants also contributes to the adsorption process. Styryl pyridinium dyes are found to anchor on silica surface in flat-on position. On modification of the silica by treating with alkali, the adsorption behaviour of cationic surfactant or polyethylene glycol changes due to change in the characteristics of silica or modified silica surface. In case of PEG-modified silica, adsolubilization of the adsorbate is observed. By using a modified adsorption equation, hemimicellization is proposed for these dyes. Adsorptions of some natural macromolecules like proteins and nucleic acids are investigated to study the hydrophobic and hydrophilic binding sites of silica. Artificial macromolecules like synthetic polymers are found to be adsorbed on silica surface due to the interaction of the multifunctional groups of the polymers with silanols. Preferential adsorption of polar adsorbates is observed in case of adsorbate mixtures. When surfactant mixtures are considered to study competitive adsorption on silica surface, critical micelle concentration of individual surfactant also contributes to the adsorption isotherm. The structural study of adsorbed surface and the thermodynamics of adsorption are given some importance in this review.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号