首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 312 毫秒
1.
为推动锶同位素在水产品溯源中的应用,本文建立了基于电感耦合等离子体质谱法(ICP-MS)测定水产品中锶同位素比值的分析方法。水产品组织经冻干研磨和微波消解后,用ICP-MS测定样品溶液中的锶同位素比值,并采用标准品-样品-标准品交叉测量方法降低质量歧视效应的影响。结果表明,通过稀释样品消解溶液,将总锶浓度控制在70-100 μg/L,并与80 μg/L的锶同位素标准品溶液进行交叉测量,可准确校正质量歧视效应;84Sr/86Sr、87Sr/86Sr和88Sr/86Sr的日内精密度分别为0.06%、0.03%和0.03%,日间精密度分别为0.08%、0.04%和0.03%;按照所建立的方法测定大虾和扇贝生物成分分析标准物质的锶同位素比值,84Sr/86Sr、87Sr/86Sr和88Sr/86Sr的相对标准偏差均低于0.1%。该方法前处理简单快捷并且测量精密度高,可为锶同位素比值测定并进一步应用于水产品溯源研究提供技术支撑。  相似文献   

2.
研究了多接收电感耦合等离子体质谱(MC-ICP-MS)测定红酒样品中87Sr/86Sr同位素比的分析方法,并用建立的分离测定方法参加了欧洲参考物质与测量研究所(IRMM)组织的CCQM-P105国际比对,即红酒中87Sr/86Sr同位素比的分析比对.红酒样品经微波消解后,采用Dowex 50W×8树脂分离纯化锶,用MC-ICP-MS精确测定锶组分中的87Sr/86Sr同位素比,同时对测量结果的不确定度进行了分析和评定.  相似文献   

3.
HAc溶解碳酸盐岩测定87Sr/86Sr值实验方法研究   总被引:1,自引:0,他引:1  
传统的碳酸盐岩的sr同位素比值测定因为采用HCl溶样,往往导致非碳酸盐组分的溶解,引起测定值偏高,采用HAc溶样可以防止样品中非碳酸盐组分的溶解,同时也避免过多的杂质离子进入溶解液,从而使^87Sr/^86Sr测定值趋于准确和可靠;通过2.5mol/L HAc溶解碳酸盐矿样和4.0mol/L HCl溶解残渣样的最后质谱测定的^87Sr/^86Sr值比较,证实碳酸盐岩中非碳酸盐组分的^87Sr/^86Sr值较碳酸盐组分高。  相似文献   

4.
贺茂勇  逯海  金章东  王军 《分析化学》2012,(7):1109-1113
采用锶特效树脂(Sr-Spec)建立了快速分离富集人牙齿中微量元素锶,并测定87Sr/86Sr的有效方法。采用HNO3-HClO4体系消解牙齿样品,以8mol/L HNO3为介质上柱,8mol/L HNO3淋洗,0.05mol/LHNO3洗脱,收集淋洗液,蒸干;采用正热电离质谱法进行87Sr/86Sr的测定。结果表明,利用Sr-Spec树脂,不仅能将锶与基质中大量钙分离,并能有效分离同位素测定中干扰元素铷。本方法可以缩短分离时间,提高分离效率,减少试剂用量,降低实验空白。采用本方法对陕南地区人牙齿牙釉质中锶进行分离,测得的87Sr/86Sr值在0.710948~0.711037之间。  相似文献   

5.
本研究以Sr-Spec树脂作为分离锶的特效树脂,以HNO3为淋洗液,通过改变HNO3的浓度,将地质岩石样品中的锶分离富集.实验结果表明,Sr与基质元素和Rb能很好地分离.利用Sr-Spec树脂分离国际标准物质SRM607、日本岩石标样JA-2、JB-2、JF-2和国家标准物质GBW04111后, 测得同位素比值87Sr/86Sr结果及误差(2σ)分别为1.200660±22, 0.706350±17, 0.703640±16, 0.709692±22和0.700008±23.相对于常规的阳离子树脂分离方法,此方法所用淋洗试剂量少,分离流程短,可以降低实验空白并提高工作效率.因此,Sr-Spec树脂分离法是快速分离富集不同岩性地质样品的Sr并测定87Sr/86Sr的有效方法.  相似文献   

6.
利用热电离质谱检测了进口自加拿大、法国、澳大利亚和美国的大麦样本的87Sr/86Sr同位素比值。研究了TIMS测定进口大麦87Sr/86Sr同位素比值的精密度,利用SPSS 25.0对不同进口国大麦样本的87Sr/86Sr同位素比值进行了正态性验证、置信区间分析、方差分析和事后多重比较。结果表明:TIMS技术测定进口大麦87Sr/86Sr同位素比值日内精密度和日间精密度分别达到0.003 59%和0.010 20%;不同进口国的大麦样本87Sr/86Sr同位素比值成正态分布,置信区间分析、方差分析以及事后多重比较都显示不同进口国大麦87Sr/86Sr同位素比值间具有显著性差异,可以利用TIMS测定大麦中的87Sr/86Sr同位素比值并进行进口国溯源。  相似文献   

7.
采用锶特效树脂,以萃取色谱法将锶离子自基体中分离,详细介绍了锶特效树脂萃取原理,进行了实验条件优化。采用HNO3消解海水样品,以HNO3(8.0mol/L)为介质上柱,用HNO3(8.0mol/L)淋洗,样品中的锶离子被强烈吸附在树脂柱上,再以HNO3(0.05mol/L)洗脱,Sr被解吸。收集淋洗液,蒸干,采用热电离同位素质谱仪测定海水样品中的87Sr/86Sr比值。结果表明,利用锶特效树脂,可将锶与基体元素(K,Na,Mg,Ba)分离,并能有效分离同位素测定中干扰元素Ca和Rb。消除了基体干扰,提高了分离效率,达到灵敏测定。  相似文献   

8.
用氢化物原子荧光光度法测定虾粉中总砷含量时,对干法灰化、湿法消解、微波消解3种样品处理方法对虾粉中砷元素测定结果的影响进行了比较。通过试验确定了最佳消解条件。砷元素浓度在0~10μg/L的范围内与荧光强度呈线性关系,线性相关系数r=0.999 6,检出限为0.2μg/L。比对结果表明,干法灰化适合于测定虾粉中总砷的含量,湿法消解测定总砷的含量偏低,微波消解不适合测定虾粉中总砷的含量。采用干法灰化-氢化物原子荧光光度法测定虾粉中总砷含量,加标回收率为76.2%~106.0%。  相似文献   

9.
为考察不同消解方法的优缺点以及对不同基质样品(沉积物和大米)Cd同位素组成的影响,该文采用干法灰化法、酸提取法、微波消解法和高温高压密闭消解法等消解方法对水系沉积物(GSD)进行消解处理,比较了不同消解方法对沉积物Cd同位素组成测定的影响。随后使用微波消解法和高温高压密闭消解法对大米标准物质以及实际大米样品进行了消解。结果表明:高温高压密闭消解法所获得的沉积物Cd同位素测试结果在国内外文献报道的参考值范围内,能够满足同位素测定要求。而使用干法灰化法和酸提取法消解样品时,由于存在元素损失或消解不完全,标准物质Cd元素的回收率偏低(低至72.8%),导致同位素测试结果显著偏离真实值(Δ114/110Cd值最大偏差达0.24‰)。微波消解法处理标准物质Cd元素的回收率在96.6%~98.8%范围内,且同位素测试结果与高温高压密闭消解法结果吻合良好(Δ114/110Cd≤±0.04‰),表明微波消解法可以满足沉积物Cd同位素的测定要求,能够获得准确的Cd同位素组成数据。对大米标准物质和实际大米样品进行消解,所获得的Cd同位素测试结果与上述沉积物样品结果相同(Δ114/110Cd≤±0.04‰),进一步验证了微波消解法的可靠性,证实微波消解法可用于沉积物及植物样品(大米)Cd同位素分析的快速消解。  相似文献   

10.
在自制微型离子交换柱的基础上,建立了阴离子交换树脂AG1-X8分离富集珊瑚中痕量元素Pb的前处理方法,并使用高分辨电感耦合等离子体质谱(HR-ICP-MS)测定了海南橙黄滨珊瑚(porites lutea)样品中的Pb同位素比值。从全程空白值、洗脱曲线、回收率和基体分离情况等方面考察了不同洗脱剂的洗脱效果,结果表明,采用0.50 mol/L HNO3时的洗脱效果最好,方法的全程空白值为18 pg,Pb的回收率为99.6%,在洗脱过程中无拖尾现象,且能与Ca、Sr、Mg、Fe、Mn、Zn、Ba和U等珊瑚中的基体元素成功分离,对上述基体元素的去除率均能达到99.8%以上。使用该方法测得海南珊瑚样品中的207Pb/206Pb、208Pb/206Pb比值分别为0.850 5、2.087 0,相对标准偏差(RSDs,n=21)分别为0.12%和0.11%。该法质量控制良好,表明建立的AG1-X8阴离子交换树脂分离富集/HR-ICP-MS测定珊瑚中Pb的同位素组成的方法可靠,可推广应用于其它复杂样品中铅同位素组成的测定。  相似文献   

11.
The strontium isotope ratio ((87)Sr/(86)Sr) in beef, derived from 206 European cattle, has been measured. These cattle were located in 12 different European regions within France, Germany, Greece, Ireland, Italy, Spain and the UK. As animal protein is known to be a difficult material on which to conduct Sr isotope analysis, several investigations were undertaken to develop and improve the sample preparation procedure. For example, Sr isotope analysis was performed directly on freeze-dried meat and defatted dry mass from the same samples. It was found that enormous differences-sometimes exceeding the measurement uncertainty-could occur between the fractions and also within one sample even if treated in the same manner. These variations cannot be definitely allocated to one cause but are most likely due to inhomogeneities caused by physiological and biochemical processes in the animals as post mortem contamination during analytical processing could be excluded. For further Sr isotope measurements in meat, careful data handling is recommended, and for the authentic beef samples within this project, it was decided to use only freeze-dried material. It can be demonstrated, however, that Sr isotope measurements in beef proteins are a valuable tool for authentication of geographic origin. Although partly overlapping, some of the European sampling sites could be discriminated even by only using (87)Sr/(86)Sr.  相似文献   

12.
We present a method to determine (88)Sr/(86)Sr and (87)Sr/(86)Sr simultaneously. The former variation reflects the mass-dependent isotopic fractionation through the physico-chemical processes, and the latter originates from beta(-)-decay of the parent nuclide (87)Rb as well as the mass-dependent isotopic fractionation. In order to determine the mass-dependent isotopic fractionation, the mass-discrimination effect on (88)Sr/(86)Sr was externally corrected by an exponential law using Zr. For the radiogenic growth of (87)Sr/(86)Sr, the mass-dependent isotopic fractionation effect on (87)Sr/(86)Sr was corrected by a conventional correction technique using the (88)Sr/(86)Sr ratio. The reproducibility of the (88)Sr/(86)Sr and (87)Sr/(86)Sr measurements for a high-purity Sr chemical reagent was 0.06 per thousand (2SD, n = 20) and 0.07 per thousand (2SD, n = 20), respectively. Strontium isotopic ratios ((88)Sr/(86)Sr and (87)Sr/(86)Sr) were measured on six geochemical reference materials (igneous rock: JB-1a and JA-2; carbonate mineral: JLs-1, JDo-1, JCp-1 and JCt-1) and one seawater sample. The resulting (87)Sr/(86)Sr ratios obtained here were consistent with previously published data within the analytical uncertainties. The resulting (88)Sr/(86)Sr ratios for igneous rock samples did not vary significantly within the samples, whereas the carbonate samples showed enrichments of the lighter Sr isotopes over the seawater sample. The (88)Sr/(86)Sr ratio of geochemical samples could reflect the physico-chemical processes for the sample formation. Also, a combined discussion of (88)Sr/(86)Sr and (87)Sr/(86)Sr of samples will render multi-dimensional information on geochemical processes.  相似文献   

13.
The paper describes a new high-precision method for the simultaneous precise determination of 88Sr/86Sr and 87Sr/86Sr ratios in a single portion of a geological sample by multicollector inductively coupled mass spectrometry (MC-ICP-MS). The isotope analysis is carried out with mass bias effect correction by a combination of internal normalization to the standard Zr-isotope ratio and bracketing standard method (external normalization). Our results for geochemical IAPSO and BCR-1 standard samples are in a good agreement with the published data. The reproducibility of the 88Sr/86Sr ratio varies from ±0.015 to ±0.05?? (depending on the sample features) and, together with the analysis accuracy, is superior to the previously reported methods of MC-ICP-MS analysis. Still ahead is only double spike thermal ionization mass spectrometry with its ±0.02?? reproducibility. However, the new method allows the simultaneous determination of 88Sr/86Sr and 87Sr/86Sr ratios and its productivity is higher by 5 to 6 times. On the other hand, in sample preparation, it is necessary to strive for at least 95% Sr yield from the chromatographic column; otherwise the sorption-desorption process may lead to a 0.6?? 88Sr/86Sr ratio bias relative to the true value.  相似文献   

14.
Rb-Sr dating, one of the most important tools in geochronology, requires determination of the Rb/Sr concentration ratios and the 87Sr/86Sr isotope ratios in co-genetic minerals or rocks and is traditionally performed by thermal ionization mass spectrometry (TIMS). In this work we investigated whether sector field inductively coupled plasma mass spectrometry (ICP-MS), which is characterized by a high sample throughput and straight-forward sample introduction, could be used as an alternative to TIMS. To avoid spectral overlap of the ion signals of the isobaric nuclides 87Sr and 87Rb, Sr was separated from Rb by cation-exchange chromatography. A mathematical correction was applied to take into account the small amount of Rb that can be present in the Sr fraction. The isotope ratio accuracy and precision attainable with ICP-MS were evaluated by analysis of several reference materials from the US Geological Survey. The results of this evaluation show that excellent accuracy could be achieved; the internal precision (repeatability) of the isotope ratio (expressed as the relative standard deviation for 10 successive 1-min measurements) was 0.04-0.12%. An attempt was made to calculate the total or combined uncertainty on the isotope ratio results, by also taking into account other possible error sources (corrections for mass discrimination, detector dead time, blank signal and Rb fraction). Finally, the same procedure was used for dating two rock formations that were 2,500 Ma and 350 Ma old, according to age determinations previously performed by the Rb-Sr laboratory of the University of München (Germany) using TIMS. The ICP-MS results (2,520 +/- 150 Ma and 379 +/- 48 Ma) obtained for these formations compare well with the corresponding TIMS data (2,509 +/- 120 Ma and 357 +/- 25 Ma).  相似文献   

15.
We describe a precise and accurate method for the direct determination of the 87Sr/86Sr isotope ratio of bottled Sr-rich natural mineral drinking water using multiple collector inductively coupled plasma mass spectrometry (MC-ICP-MS). The method is validated by the comparative analysis of the same water with and without cation-exchange resin purification. The work indicates that isobarically interfering elements can be corrected for when 87Rb/86Sr < 0.05 (Rb/Sr < 0.015), and that the matrix elements (Ca, Mg, K and Na) have no significant effect on the accuracy of the Sr isotope data. The method is simple, rapid, eliminates sample preparation time, and avoids potential contamination during complicated sample-preparation procedures. Therefore, the high sample throughput inherent to the MC-ICP-MS can be fully exploited.  相似文献   

16.
In the present study, the determination of mineral and trace elements (Al, B, Ca, Cu, Fe, K, Mg, Mn, Na, P and Zn) from pine needles using three sample pre-treatment methods followed by inductively coupled plasma optical emission spectrometry, was examined. Sample pre-treatment methods tested were microwave digestion, ultrasound-assisted digestion and dry ashing. The new ultrasound-assisted digestion method was optimised by the analysis of the standard reference material (SRM) 1575a (pine needles) sample. The speed of dry ashing method was significantly increased by ultrasound dissolution after ashing. All the ICP-OES measurements were performed in robust plasma conditions which were tested by measuring the Mg II 280.270 nm/Mg I 285.213 nm line intensity ratios. The microwave digestion resulted generally in slightly higher element concentrations than ultrasound-assisted digestion. B, Cu and Na resulted in such low concentrations that they could not be accurately determined by using the microwave digestion method. The t-tests found no significant differences between the certified and the determined element concentrations of the SRM 1575a using the dry ashing method followed with ultrasound dissolution.  相似文献   

17.
As 87Sr/86Sr ratio plays a significant role in authenticating the geographical origin of foodstuff, it is important to identify where the 87Sr/86Sr signature in food comes from, and the methods of 87Sr/86Sr ratio analysis in food and environmental samples. Wheat with three genotypes, soil and groundwater samples were collected from three regions of China during harvest time of 2014. The 87Sr/86Sr ratios in the samples were determined by thermal ionization mass spectrometer in order to investigate the possible source of 87Sr/86Sr in wheat, and the concentrations of Rb and Sr in wheat and soils were also detected by inductively coupled plasma mass spectrometry and combined with 87Sr/86Sr ratio in order to trace the geographical origin of wheat. The 87Sr/86Sr ratio, the contents Rb and Sr, and Rb/Sr ratio of wheat and soil samples showed significant differences among three regions. The 87Sr/86Sr ratios and the concentrations of Rb and Sr in soils were higher than those in corresponding wheat. The 87Sr/86Sr ratio in wheat was identical to that corresponding soil NH4NO3 extracts (labile fraction of soil) and groundwater. Wheat uptake more Rb than Sr. 3D distribution of 87Sr/86Sr, Rb and Sr could identify wheat samples from different regions clearly. The 87Sr/86Sr ratio of wheat reflects the 87Sr/86Sr ratio of the associated environment including soil and groundwater. It is expected that the use the parameters of 87Sr/86Sr ratio, the contents of Rb and Sr will allow to trace geographical origin of wheat. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

18.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号