首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
高超声速飞行器对于更高飞行速度的追求,给地面风洞设备模拟能力提出了新的要求,磁流体加速成为一个重要突破方向.文章介绍了国内外在磁流体加速基本原理以及磁流体加速技术应用于地面风洞试验方面的研究工作.基于磁流体(magneto-hydro-dynanic,MHD)加速的高超声速风洞设备可以模拟高超声速飞行器的试验条件,复现超高速的飞行环境,是突破超高速飞行器再入研究地面试验模拟能力的关键技术,在航空航天领域具有重要的研究意义和应用前景.   相似文献   

2.
磁流体中Helmholtz和Kelvin力的界定   总被引:3,自引:0,他引:3       下载免费PDF全文
刘桂雄  蒲尧萍  徐晨 《物理学报》2008,57(4):2500-2503
磁流体磁彻体力的两种简化形式Helmholtz力和Kelvin力具有一定的适用范围.在推导磁流体中的磁彻体力表达式基础上,分析Helmholtz力和Kelvin力在磁流体中的起源,得出两种形式的成立条件.计算结果表明:当磁流体磁导率与外磁场强度无关时,磁流体磁彻体力可由Helmholtz力表示;当磁流体中磁性颗粒的平均磁矩与磁流体比体积无关时,Kelvin力为磁彻体力的简化形式;在磁流体磁化系数与其密度成正比情况下,Helmholtz力可转换为Kelvin力. 关键词: 磁流体 磁彻体力 Helmholtz力 Kelvin力  相似文献   

3.
基于磁流体的微观聚集结构,本文建立了研究磁流体薄层光学性质的模型,运用蒙特卡洛方法模拟计算了磁流体薄层的光谱透射率,并分析了外加磁场对磁流体薄层透射率的影响.结果表明外加垂直于磁流体薄层方向的磁场作用时,磁流体薄层的光谱透射率会随着外加磁场强度的增大而增大.而外加平行于薄层方向的磁场作用时,磁流体薄层的光谱透射率无明显变化,但局部透射率呈现矩形波式的分布.  相似文献   

4.
对光纤中磁流体在梯度磁场作用下的光透射特性进行了研究,提出光纤中磁流体的光透射率变化主要来源于梯度磁场引起的磁流体密度分布变化。根据郎之万函数和流体理论,推导了光纤中磁流体在梯度磁场作用下的密度分布,并根据Beer-Lambert定律,得到磁流体光功率透射衰减和纳米粒子局部密度的关系,从而建立光纤中磁流体在梯度磁场作用下光透射特性的理论模型。进而对光纤中磁流体在不同梯度磁场作用下的光透射功率进行数值分析,得到不同磁场强度和磁场梯度下光纤中磁流体透射功率的变化规律。最后将数值分析的结果和实验数据进行对比,验证了模型的合理性, 同时也验证了梯度磁场作用下磁流体光透射功率的变化主要来源于磁流体密度分布变化的推论。  相似文献   

5.
孙国庆  卜胜利  刘明  戴敏 《光子学报》2011,40(5):652-657
利用二氧化硅和聚苯乙烯非磁性微球掺入铁氧体纯磁流体中,制得了复合磁流体.定性地研究了复合磁流体在外磁场作用下的双折射与非磁性微球的种类、掺杂浓度以及纯磁流体自身浓度的关系.研究表明,不同浓度的纯磁流体掺杂等量的聚苯乙烯微球对其双折射随磁场的变化趋势影响不同;同一浓度的纯磁流体掺杂不同种类的非磁性微球,对其双折射的影响也...  相似文献   

6.
在模拟外磁场作用时磁流体的微观聚集结构的基础上,本文建立了研究磁流体光学性质的微观模型,运用蒙特卡洛方法模拟了光线在磁流体薄层内传递的全过程,统计计算磁流体薄层的光谱透射率,分析了薄层厚度、磁性纳米粒子含量和粒径以及外加磁场强度对磁流体薄层光谱透射率的因素.  相似文献   

7.
孙国庆  卜胜利  刘明  戴敏 《光子学报》2014,40(5):652-657
利用二氧化硅和聚苯乙烯非磁性微球掺入铁氧体纯磁流体中,制得了复合磁流体.定性地研究了复合磁流体在外磁场作用下的双折射与非磁性微球的种类、掺杂浓度以及纯磁流体自身浓度的关系.研究表明,不同浓度的纯磁流体掺杂等量的聚苯乙烯微球对其双折射随磁场的变化趋势影响不同|同一浓度的纯磁流体掺杂不同种类的非磁性微球,对其双折射的影响也不同|掺杂等量但不同比例的两种非磁性混合微球所形成的复合磁流体中,其中一种非磁性微球对其双折射的影响起主导作用,使得该复合磁流体双折射随磁场的变化趋势与起主导作用的非磁性微球单独掺杂时相似.  相似文献   

8.
外磁场作用下磁流体的对流换热特性   总被引:2,自引:0,他引:2  
实验研究了外加磁场作用下水基磁流体的对流换热特性,分别测量了均匀磁场和梯度磁场条件下磁流体横掠加热细丝的对流换热系数,分析了外加磁场强度和方向对磁流体传热性能的影响.实验结果表明,外加磁场是影响磁流体对流换热的一个重要因素,应用外加磁场可以控制磁流体对流换热过程.  相似文献   

9.
环境温度对纳米磁流体场诱导光学双折射的影响   总被引:1,自引:1,他引:0  
在20~80℃温度范围内,研究了两种浓度的铁氧体(主要成分为Fe3O4)磁流体在一系列固定磁场强度(场强范围为0~200mT)下的双折射与温度的关系.结果表明不同浓度磁流体的双折射具有类似的磁场和温度依赖性.固定磁场强度时,磁流体的双折射值与温度成反比;而温度恒定时,磁流体的双折射值与外磁场的强度成正比;在相同磁场强度、恒定温度下,高浓度磁流体的双折射值比低浓度磁流体的大.详细分析了实验结果,并深入讨论了磁流体双折射的温度、场强和浓度依赖性的物理机理.  相似文献   

10.
卜胜利  刘明  孙国庆 《光子学报》2014,39(10):1742-1746
在20~80 ℃温度范围内,研究了两种浓度的铁氧体(主要成分为Fe3O4)磁流体在一系列固定磁场强度(场强范围为0~200 mT)下的双折射与温度的关系.结果表明不同浓度磁流体的双折射具有类似的磁场和温度依赖性.固定磁场强度时,磁流体的双折射值与温度成反比|而温度恒定时,磁流体的双折射值与外磁场的强度成正比|在相同磁场强度、恒定温度下,高浓度磁流体的双折射值比低浓度磁流体的大.详细分析了实验结果,并深入讨论了磁流体双折射的温度、场强和浓度依赖性的物理机理.  相似文献   

11.
建立了描述外磁场作用下温度敏感型磁流体热磁对流特性的数学模型,数值模拟了回路中热磁对流的流动与传热特性.搭建了磁流体热磁对流回路装置,采用粒子示踪测速技术(PIV)测量了磁流体的流速,用热电偶测量了磁流体的温度分布.通过实验值和数值模拟结果,分析了不同磁场大小、不同热负荷,以及不同冷却温度下回路的运行特性.  相似文献   

12.
考虑磁性颗粒受到的各种内力与外力包括重力、布朗力、van der、Waaks力、磁偶极-偶极作用力以及外磁场作用力,建立了描述磁流体结构的两相格子-Boltzmann三维模型,对外加梯度磁场条件下磁流体的介观结构进行了模拟.模拟结果表明:外加梯度磁场时磁流体粒子沿梯度方向聚集并出现分层现象,且随时间推移和外加磁场增大,分层现象越来越明显.  相似文献   

13.
建立了测量非均匀磁场条件下圆柱腔体内磁流体热磁对流特性的实验系统,实验结果显示,磁流体热磁对流特性受磁场强度、温差以及磁场梯度方向与温度梯度方向之间关系的控制,当磁场梯度方向与温度梯度方向一致时,外加磁场强化了磁流体的热磁对流过程,且随着磁场强度和温差的增大,热磁对流强度加强。当磁场梯度方向、温度梯度方向以及重力方向三者相同时,磁流体的热磁对流强度最剧烈。  相似文献   

14.
在水平温度梯度下,双层流体交界面的表面张力会出现梯度,驱动热毛细对流运动,造成热剪切层内的扰动.本文数值模拟了不同重力条件下,双层流体内的对流现象,得出了在微重力时,对流运动将引起热剪切层内强烈的扰动.为了减弱这种扰动,我们利用磁场对流体的运动进行控制.为此,又对微重力条件下,不同方向应用磁场下的热剪切层内扰动行为进行了数值研究,结果显示,磁场对热剪切层稳定性有促进作用,加入法向的应用磁场最为有效.  相似文献   

15.
熊小明  周世勋 《物理学报》1987,36(12):1630-1634
本文在均匀正电背景下,利用哈密顿量数值对角化方法讨论了强磁场中二维有限电子体系。对库仑相互作用的三电子体系给出了详细的讨论。计算了1/3填充因子的基态能和波函数,并且与不可压缩流体模型的结果作了比较。 关键词:  相似文献   

16.
本文通过对水和磁性液体表面张力演示实验的研究,分析了液体表面张力存在的内在因素,使学生对表面张力有更深的认识。  相似文献   

17.
磁流体粘度的实验研究   总被引:1,自引:0,他引:1  
采用毛细法粘度计测量了水基Fe磁流体的粘度,分析了磁性粒子份额、表面活性剂含量以及外加磁场强度和方向对粘度的影响。实验结果表明,磁流体粘度随着磁性粒子和表面活性剂浓度的增加而增加;随着外加磁场强度的增大而增大,对于相同的磁流体,在外加磁场方向垂直于流动方向时的粘度大于外加磁场方向平行于流动方向时的粘度;表面活性剂含量的增大将减弱外加磁场对磁流体粘度的影响。  相似文献   

18.
本文介绍了两种不同的磁性排斥实验方法。验证了磁力与两磁铁间距离平方成反比的关系。并为大学物理实验及演示实验推荐了有参考价值的实验装置。  相似文献   

19.
红条毛肤石鳖齿舌的磁性研究   总被引:8,自引:1,他引:7       下载免费PDF全文
研究了红条毛肤石鳖(Acanthochton rubrolinestus LISCHKE)齿舌的磁性及其中磁性粒子的结构,并且讨论了磁性粒子在齿舌中生成的取向性和磁晶各向异性. 关键词:  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号