首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 942 毫秒
1.
通过匹配激光光斑直径与胶体微球的尺寸, 设计制备了银纳米粒子的表面增强拉曼散射(SERS)基底, 并将其用于研究单个银纳米粒子簇的表面增强拉曼光谱. 在制备纳米粒子的过程中, 考察了等离子体刻蚀时间与银沉积厚度对“单”银纳米粒子结构与形貌的影响. 将吡啶、 巯基苯和罗丹明R6G作为SERS探针分子, 研究了其SERS效应, 通过荧光共振能量转移(FRET)机理, 实现了染料分子在单银纳米粒子簇上的SERS效应. SERS光谱测试与相关计算结果表明, 单个银纳米粒子簇的拉曼增强因子能够达到约106.  相似文献   

2.
采用静电自组装技术分别在玻璃基片和30 nm厚的金膜表面固定一层金纳米粒子(GNP)制得两种表面增强拉曼散射(SERS)基底,然后通过棱镜全内反射(TIR)激励和背向收集模式分别测试了两种基底上吸附的染料单分子层SERS光谱.实验结果表明两种SERS基底的拉曼增强效果均高度依赖于入射激光的偏振状态,对于玻璃/纳米金SERS基底,s光全内反射导致的拉曼增强因子是线偏振光(p)光的2-5倍,说明该基底上的"热点"位于纳米金单层膜内相邻粒子之间;对于玻璃/金膜/纳米金SERS基底,只有采用p光在特定的全内反射角下才能激发SERS信号,而且测得的SERS信号比玻璃/纳米金基底增强了近30倍.究其原因是p光在金膜表面共振激发的传播表面等离子体与纳米金局域表面等离子体耦合,进而导致显著场增强.实验结果指出在背向收集模式下,由p光激发的SERS信号是非偏振光,包含强度几乎相等的s和p成分.利用玻璃/金膜/纳米金基底还实现了拉曼光定向发射和收集,测得的SERS信号是p光.  相似文献   

3.
以带正电的聚苯乙烯(PS)微球为模板分别制备出表面层为二氧化硅的杂化微球(PS@Si O2)及空心二氧化硅微球(HSSi,hollow spheres of Si O2).利用巯基硅烷偶联剂的桥联作用将金或银纳米粒子修饰到二氧化硅壳层的外表面,制备出4种结构均匀、体积窄分布的复合粒子:(1)纳米金修饰在空心二氧化硅微球的外表面(HSSi-Au NPs);(2)纳米金修饰在实心的PS/二氧化硅杂化微球(PS为核、二氧化硅为壳层)的外表面(PS@Si O2-Au NPs);(3)纳米银修饰在空心二氧化硅微球的外表面(HSSi-Ag NPs)以及(4)纳米银修饰在实心的PS/二氧化硅杂化微球的外表面(PS@Si O2-Ag NPs).分别利用上述4种复合粒子作为拉曼增强(SERS)基底,并以结晶紫(CV)为探针分子对各基底的拉曼增强效果进行了研究,其CV检测限依次为10-10、10-9、10-11和10-11mol/L,均具有较高的灵敏度.结果表明,以空心二氧化硅微球作为载体的增强效果优于以实心的杂化微球作为载体的增强效果(HSSi-Au NPs对CV的检测限比PS@Si O2-Au NPs对CV的检测限低1个数量级;虽然HSSi-Ag NPs和PS@Si O2-Ag NPs对CV的检测限相同,但对于相同浓度的CV,前者所获得的信号要明显强于后者).多次随机的重复测试表明,上述4种基底均具有优良的重复性.将上述4种基底在实验室放置3个月后用于CV的检测,各个基底仍具有相近的拉曼增强效果,即上述4种SERS基底的稳定性良好.  相似文献   

4.
采用溶胶-凝胶法结合超分子模板技术, 以四乙氧基硅烷(TEOS)和3-氨丙基三乙氧基硅烷(APTES)作为反应前体, 以十六烷基三甲基溴化铵(CTMAB)为超分子模板, 简单快速地制备了一种新型氨基硅胶整体柱, 通过氨基将金纳米粒子组装在整体柱材料孔表面并用于表面增强拉曼散射(SERS)光谱分析. 以对巯基苯胺(PATP)和结晶紫(CV)为拉曼探针, 考察了金纳米粒子修饰的氨基硅胶整体柱用作SERS活性基底的性能. 结果表明, 该整体柱基底具有良好的SERS增强效应, 可检测到的PATP和CV的最低浓度分别为10-9和10-11 mol/L. 与金溶胶SERS基底相比, 本文制备的整体柱基底的检测灵敏度显著提高, 并具有良好的信号均一性, 是一种具有现场痕量检测应用潜力的SERS活性基底.  相似文献   

5.
以聚苯乙烯微球为模板, 经过原位还原和种子生长过程在聚苯乙烯微球表面包覆银(Ag)纳米粒子; 以正硅酸乙酯为硅源, 在十六烷基三甲基溴化铵的导向下实现介孔二氧化硅(mSiO2)可控包覆, 去除模板得到Ag/mSiO2空心微球. 透射电子显微镜(TEM)和氮气吸附-脱附分析结果表明, SiO2壳层厚度约为20 nm, 介孔孔径为2.1 nm, 孔道分布均匀. 进一步利用虹吸作用使对巯基苯胺(4-ATP)分子进入微球内与Ag粒子结合, 构建表面增强拉曼散射(SERS)标记材料. SERS测试结果表明, 该标记材料检测限达到10-7 mol/L, SERS增强因子达到3.7×105.  相似文献   

6.
采用金种子原位生长法,以SiO_2胶体晶体为模板,H_2O_2为还原剂实现了三维有序金纳米壳(GNSs)结构的可控制备,并对其生长过程中表面增强拉曼光谱(SERS)性能进行了研究。实验结果表明,通过控制反应时间、反应温度、还原剂H_2O_2及生长液K_2CO_3-HAuCl_4的量等参数实现了三维有序GNSs阵列的可控批量制备,并可根据需要去除SiO_2内核得到中空有序GNSs结构。通过对其SERS性能的研究,发现SiO_2表面完全被Au纳米粒子覆盖的粗糙结构具有最佳的SERS性能,且对应的中空有序GNSs结构显示出更优异的SERS活性。  相似文献   

7.
金核银壳纳米粒子薄膜的制备及SERS活性研究   总被引:5,自引:0,他引:5  
采用柠檬酸化学还原法制备金溶胶, 通过自组装技术在石英片表面制备金纳米粒子薄膜, 在银增强剂混合溶液中反应获得金核银壳纳米粒子薄膜. 用紫外-可见吸收光谱仪和原子力显微镜(AFM)研究了不同条件下制备的金核银壳纳米粒子薄膜的光谱特性和表面形貌, 并以结晶紫为探针分子测量了金核银壳纳米粒子薄膜的表面增强拉曼光谱(SERS). 结果表明, 金纳米粒子薄膜的分布、银增强剂反应时间的长短对金核银壳纳米粒子薄膜的形成均有重要影响. 制备过程中, 可以通过控制反应条件获得一定粒径的、具有良好表面增强拉曼散射活性的金核银壳纳米粒子薄膜.  相似文献   

8.
构建了具有表面增强拉曼散射(SERS)活性的二维有序环状与盘状的银纳米粒子结构, 利用CTAB包覆银纳米粒子的氯仿溶液直接在图案化的金基底上进行去湿, 当改变银纳米粒子的浓度时可以得到不同的图案. 利用原子力显微镜(AFM)对其结构进行了表征, 以4-巯基吡啶作为探针分子, 采用表面增强拉曼成像技术研究了这种基底的SERS活性, 这将为SERS的研究开拓新的领域.  相似文献   

9.
采用溶胶-凝胶技术制备富含巯基的二氧化硅微球,在其表面原位合成银纳米颗粒,将其作为表面增强拉曼散射(Surface-enhanced Raman scattering,SERS)的活性基底材料,重点讨论了银纳米颗粒作为"热点"对SERS性能的影响。银纳米颗粒的原位生成导致微球表面粗糙化,致密的纳米颗粒能够形成更多的热点,分别采用透射电镜、扫描电镜、X射线光电子能谱、Raman等对银纳米颗粒在微球表面生长状况进行了表征。结果表明,微球表面的巯基直接导致银纳米颗粒的生长,并为银纳米颗粒的稳定性提供了还原性环境。  相似文献   

10.
Pickering乳滴模板法制备有机/无机杂化的核壳微球越来越引起人们的关注,主要因为该方法制备出的微球具有以无机粒子为壳层的超粒子结构(supracolloidal structure),能够赋予微球独特的功能.胶体粒子在乳滴表面自组装形成有序的球面胶体壳,得到稳定Pickering乳液,固定乳滴表面的胶体粒子来制备核壳结构的微球或者以胶体粒子为壳层的微胶囊(colloidosome).本文综述了我们课题组以Pickering乳滴模板法制备超粒子结构有机/无机杂化微胶囊包括实心微球方面的工作.我们选择具有不同性能、种类的胶体粒子以及具有不同性质和功能的核材料,采用Pickering乳滴模板法,对吸附在乳滴表面的胶体粒子用不同的固定方法制备具有不同结构和性能的微球和微胶囊,利用基于多重Pickering乳液的聚合技术制备双纳米复合的超粒子结构多核聚合物微球.  相似文献   

11.
提出了一种组蛋白乙酰化修饰检测的耦合增强拉曼散射生物传感新方法. 该方法以金纳米粒子为表面增强拉曼散射(SERS)基底, 表面修饰乙酰化组蛋白H3多肽为识别探针, 对甲氧基苯硫酚(4-MTP)为拉曼标记物, 制备了组蛋白乙酰化修饰检测的SERS纳米探针. 通过紫外可见吸收光谱与动态光散射分析, 证实了组蛋白乙酰化抗体可介导SERS纳米粒子发生可控组装与聚集, 使SERS纳米探针间发生局域电场共振耦合, 产生显著增强的SERS信号. 基于此, 通过待测抗原与SERS纳米探针对抗体的竞争性相互作用, 我们设计了组蛋白乙酰化修饰检测的竞争免疫SERS生物传感方法. 该法操作简便、快速、重现性好, 且裸眼即能进行可视化鉴定. 通过设计不同染料标记的SERS纳米探针, 该法有望实现多种组蛋白修饰的复合检测.  相似文献   

12.
纳米TiO2的光致发光性能与SERS效应的关系   总被引:2,自引:0,他引:2  
以采用溶胶-水热法制备的纯TiO2及Zn掺杂的TiO2纳米粒子作为SERS活性基底, 研究了其光致发光机制及其与表面增强拉曼散射(SERS)性能的关系. 结果表明, TiO2纳米粒子的表面缺陷和氧空位等表面性质在其光致发光和增强拉曼散射性能中发挥着重要的作用. 在表面缺陷和氧空位含量较低时, TiO2纳米粒子的光致发光光谱(PL)信号越强, 其SERS性能就越高; 当TiO2纳米粒子的表面缺陷和氧空位含量达到一定程度时, TiO2纳米粒子的PL信号越弱, 其SERS性能越高.  相似文献   

13.
采用溶胶-水热法制备了不同尺寸的SnO2纳米粒子, 并将其作为表面增强拉曼散射(Surface-enhanced Raman scattering, SERS)活性基底, 重点探讨了表面缺陷能级与SERS性能的关系. 观察到4-巯基苯甲酸(4-MBA)吸附在150 ℃水热合成的SnO2纳米粒子上的SERS 信号最强, 随着在空气中煅烧温度的升高, SERS信号逐渐减弱. 分别用透射电子显微镜、 紫外-可见光谱、 荧光光谱、 X射线衍射和X射线光电子能谱对SnO2纳米粒子进行了表征. 结果表明, SnO2纳米粒子的表面氧空位和缺陷等表面性质在增强拉曼散射性能中发挥着重要的作用, 表面氧空位和缺陷等含量越高其SERS信号就越强.  相似文献   

14.
利用Kretschmann棱镜耦合结构和532 nm激光光源,测试了金银合金薄膜的表面增强拉曼散射(SERS)效应,并与纯金薄膜的测试结果进行了比较.结果显示,在激发光为p偏振态且入射角近似等于表面等离子体共振(SPR)角时,附着于金银合金薄膜表面的Nile Blue分子的SERS信号达到最强,比利用纯金薄膜测得的SERS信号高约2倍.实验结果还表明,在金银合金薄膜表面自组装金纳米粒子后,Nile Blue吸附层的SERS信号比自组装纳米金之前测得的信号增强了至少3倍,比利用纳米金修饰的纯金薄膜测得的信号高出2倍多.在棱镜底面沿薄膜法线收集的SERS信号是完全非偏振光,而从棱镜侧面收集的SERS信号是p偏振光,是拉曼光借助SPR效应产生的定向发射.  相似文献   

15.
采用静电自组装技术分别在玻璃基片和30 nm厚的金膜表面固定一层金纳米粒子(GNP)制得两种表面增强拉曼散射(SERS)基底,然后通过棱镜全内反射(TIR)激励和背向收集模式分别测试了两种基底上吸附的染料单分子层SERS光谱. 实验结果表明两种SERS基底的拉曼增强效果均高度依赖于入射激光的偏振状态,对于玻璃/纳米金SERS基底,s 光全内反射导致的拉曼增强因子是线偏振光(p)光的2-5 倍,说明该基底上的“热点”位于纳米金单层膜内相邻粒子之间;对于玻璃/金膜/纳米金SERS基底,只有采用p光在特定的全内反射角下才能激发SERS信号,而且测得的SERS信号比玻璃/纳米金基底增强了近30 倍. 究其原因是p 光在金膜表面共振激发的传播表面等离子体与纳米金局域表面等离子体耦合,进而导致显著场增强. 实验结果指出在背向收集模式下,由p 光激发的SERS信号是非偏振光,包含强度几乎相等的s 和p 成分. 利用玻璃/金膜/纳米金基底还实现了拉曼光定向发射和收集,测得的SERS信号是p光.  相似文献   

16.
研究了以抗坏血酸和氯金酸为生长溶液制备金纳米花的反应机理. 结果表明, 通过改变生长溶液中抗坏血酸浓度可以调节小尺寸的初级金粒子在种子表面的聚集方式及金纳米花的熟化速度, 从而影响金纳米花的形貌和光学性质. 协同改变抗坏血酸浓度和pH值, 可实现对金纳米花形貌及光学性质的有效调控. 表面增强拉曼散射(SERS)性能评价结果表明, 抗坏血酸还原法制备的金纳米花表面较清洁, 对罗丹明6G有较好的拉曼增强效果.  相似文献   

17.
Au@SiO2核壳纳米粒子的制备及其表面增强拉曼光谱   总被引:2,自引:0,他引:2  
采用柠檬酸钠还原氯金酸法制备金溶胶, 以正硅酸乙酯(TEOS)为硅源, 氨水作催化剂, 制备以金为核, 二氧化硅为壳的核壳纳米粒子. 金纳米粒子的粒径可以通过柠檬酸钠和氯金酸的比例控制, 通过调节TEOS的量和反应的时间可以控制二氧化硅壳层的厚度. 以苯硫酚为探针分子研究了核壳结构纳米粒子的表面增强拉曼散射(SERS)效应与二氧化硅壳层厚度之间的关系. 研究结果表明, 金内核电磁场增强效应随着二氧化硅壳层厚度的增加逐渐减弱, 且其衰减速度比具有相同尺度的双金属核壳结构纳米粒子的慢. 此外, 探针分子主要以物理作用吸附在二氧化硅的表面, 可通过洗涤方法将探针分子除去, 从而可使该复合结构基底用于循环SERS分析.  相似文献   

18.
在已制备好的Ag纳米粒子表面,通过化学还原的方法沉积生长Au包裹层,制备了粒子尺寸为50-70nm的Ag核Au壳复合纳米粒子.通过改变AuCl4-量,使Ag100-xAux中Au的含量由x=0变为x=30.用UV-Vis吸收光谱和透射电子显微镜(TEM)对该结构纳米粒子进行了表征,并以对巯基苯胺(PATP)为探针分子进行表面增强拉曼光谱(SERS)研究.表面拉曼光谱表明,该结构的纳米粒子具有比Ag更强的SERS活性,随着Au:Ag比例的逐渐增加,其活性呈现先增大后减小的趋势,其最大增强约为Ag纳米粒子的10倍.  相似文献   

19.
以天然高分子阿拉伯树胶(AG)为还原剂和稳定剂制备了金纳米粒子;将含有金纳米粒子(Au NPs)、阿拉伯树胶和氨水的溶液滴加到乙醇中形成AG-Au NPs复合胶团;利用正硅酸乙酯水解,在AG-Au NPs表面包覆二氧化硅壳层;通过简单水洗的方法得到了金纳米粒子@二氧化硅(Au@SiO_2)中空微球.采用透射电子显微镜(TEM)、X射线衍射仪(XRD)和氮气吸附实验等对Au@SiO_2中空微球进行表征.通过设计对比实验,证实阿拉伯树胶在中空结构形成过程中起到模板剂的作用.催化性能测试结果表明,所制备的Au@SiO_2中空微球在硼氢化钠还原亚甲基蓝的反应中表现出良好的催化活性和重复使用性.  相似文献   

20.
表面增强拉曼散射(SERS)纳米针尖是一类单细胞分析新技术,在细胞内环境检测和细胞生理功能研究等方面具有良好的应用潜力。由于SERS纳米针尖可负载的贵金属粒子数量少,因此,筛选和修饰高SERS增强能力的纳米粒子是确保其检测灵敏度的关键。本研究制备了一种核-卫星结构的Au纳米粒子,单颗粒信号较传统Au纳米球和Au纳米星显著提高。将此粒子涂覆在尖端直径约为200 nm的玻璃毛细管表面,形成SERS纳米针尖,进一步功能化修饰靶标敏感型拉曼报告分子,使其具备检测微区环境中p H值和O2的能力。作为应用性能考察,采用SERS纳米针尖实现了单个HL-7702细胞内pH值和缺氧状态监测。本研究解决了传统颗粒态SERS探针用于细胞分析面临的随机聚集和难以精确定位等瓶颈问题,为单细胞内环境检测分析提供了一种新的分析工具。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号