首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
制备工艺对p型碲化铋基合金热电性能的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
蒋俊  李亚丽  许高杰  崔平  吴汀  陈立东  王刚 《物理学报》2007,56(5):2858-2862
利用区熔法、机械合金化、放电等离子烧结(SPS)技术、热压法等多种工艺制备了p型碲化铋基热电材料.在300—500K的温度范围内测量了各热电性能参数,包括电导率(σ)、塞贝克系数(α)和热导率(κ),研究了制备工艺对热电性能的影响.结果表明,所制备的块体材料与同组成区熔晶体相比,性能优值ZT均有不同程度的提高.其中,利用区熔法结合SPS技术可获得热电性能最佳的块体材料,其ZT值达1.15. 关键词: 碲化铋 放电等离子烧结 区熔法 热电性能  相似文献   

2.
采用机械合金化法制备了p型赝三元(Sb2Te3-Bi2Te3-Sb2Se3)合金粉体,对其进行XRD分析表明Te,Bi,Sb,Se单质粉末,经100h球磨后实现了合金化;SEM分析表明所得机械合金化粉体材料颗粒均匀、细小,颗粒尺寸在10nm到100nm量级.使用这种粉体制备了冷压烧结块体样品,在室温下测量了温差电动势率(α)和电导率(σ),研究了烧结温度对材料热电性能的影响,结果表明在低于300℃的烧结温区,样品室温下的热电性能随烧结温度的升高不断提高,功率因子(α2σ)由未烧结样品的0.59μW cm-1K-2升高到在300℃下烧结样品的15.9μW cm-1K-2,这一结果对确定材料的最佳烧结温度具有重要意义. 关键词: 赝三元热电材料 机械合金化 冷压 烧结  相似文献   

3.
This letter discusses the thermoelectric properties of Cu3PSe4 and Cu3PS4 compounds, using the Ab initio calculations. These compounds are predicted to be good thermoelectric materials thanks to the nature of their band edge states. Seebeck coefficient of Cu3PSe4 exhibits a maximum value of 1256 µV/K at roopm temperature, whereas it is 2389 µV/K for Cu3PS4. Furthermore, the electrical conductivity is significantly enhanced with doping level while the electronic thermal conductivity is weakly increased. Besides, the factor of merit of these compounds shows a value around the unity only at low doping levels. Hence, this predicts that these compounds may present excellent thermoelectric properties, therefore they could be considered as alternatives for thermoelectric applications.  相似文献   

4.
李听昕  王林  王飞  陈军  姜振益  李莉莎 《中国物理 B》2011,20(3):33101-033101
This paper investigates the geometrical structures and relative stabilities of neutral AlS n(n = 2-9) using the density functional theory.Structural optimisation and frequency analysis are performed at the B3LYP/6-311G(d) level.The ground state structures of the AlS n show that the sulfur atoms prefer not only to evenly distribute on both sides of the aluminum atom but also to form stable structures in AlS n clusters.The structures of pure S n are fundamentally changed due to the doping of the Al atom.The fragmentation energies and the second-order energy differences are calculated and discussed.Among neutral AlS n(n = 2-9) clusters,AlS 4 and AlS 6 are the most stable.  相似文献   

5.
Firstly, tellurium (Te) nanorods with a high Seebeck coefficient have been integrated into a conducting polymer PEDOT/PSS to form PEDOT/PSS/Te composite films. The Seebeck coefficient of the PEDOT/PSS/Te (90 wt.%) composite films is ~191 μV/K, which is about 13 times greater than that of pristine PEDOT/PSS. Then, H2SO4 treatment has been used to further tune the thermoelectric properties of the composite films by adjusting the doping level and increasing the carrier concentration. After the acid treatment, the electrical conductivity of the composite films has increased from 0.22 to 1613 S/cm due to the removal of insulating PSS and the structural rearrangement of PEDOT. An optimized power factor of 42.1 μW/mK2 has been obtained at room temperature for a PEDOT/PSS/Te (80 wt.%) sample, which is about ten times larger than that of the untreated PEDOT/PSS/Te composite film.  相似文献   

6.
In this work, we develop a theory of thermoelectric transport properties in two-dimensional semiconducting quantum well structures. Calculations are performed for n-type 0.1 wt.% CuBr-doped Bi2Se3/Bi2Te3/Bi2Se3 and p-type 3 wt.% Te-doped Sb2Te3/Bi2Te3/Sb2Te3 quantum well systems in the temperature range 50–600 K. It is found that reducing the well thickness has a pronounced effect on enhancing the thermoelectric figure of merit (ZT). For the n-type Bi2Se3/Bi2Te3/Bi2Se3 with 7 nm well width, the maximum value of ZT is estimated to be 0.97 at 350 K and for the p-type Sb2Te3/Bi2Te3/Sb2Te3 with well width 10 nm the highest value of the ZT is found to be 1.945 at 440 K. An explanation is provided for the resulting higher ZT value of the p-type system compared to the n-type system.  相似文献   

7.
The full potential linearized augmented plane wave (FP-LAPW) method has been used to investigate structural, electronic and thermoelectric properties of Skutterudite GdFe4As12 compounds in the framework of the density functional theory (DFT) within the generalized gradient approximation (GGA) and (GGA+U). The ground-state properties are determined in the cubic structure (Im-3, space group 204). It is found that the most stable phase structure of GdFe4As12 compounds is the ferromagnetic phase and it shows a semi-metallic behavior with narrow gap. The calculation of the density of states near the Fermi level shows the compound to be suitable for the effective thermoelectric application. In addition, the high Seebeck coefficient value is obtained in the n-type region than p-type, indicating the prominence of n-type doping in filled skutterudite GdFe4As12.  相似文献   

8.
High efficiency of thermoelectric conversion can be achieved by using materials with a high Seebeck coefficient, high electrical conductivity, and low thermal conductivity. Mass-difference-scattering of the phonons is one of the most effective way for reducing the thermal conductivity in bulk thermoelectric materials. Investigations of transport phenomena in (TlBiS2)1-x (2PbS)x alloys system have shown that in solid solutions of the (A3B5C 2 6 )1-x (2A4B6)x type at cation substitution according to scheme 2A4(+2) A 3(+1) + B5(+3) occurs a strong decrease of the lattice thermal conductivity. In the vicinity of x = 0. 50 the lattice part of thermal conductivity of (TlBiS2)1-x (2PbS)x alloys decreases down to 0. 26 W/mK, i. e., it approaches the theoretical minimum. As a result, the thermoelectric figure of merit for these alloys ( 25%) exceeds the respective value for lead sulfide at room temperature.  相似文献   

9.
In this Letter, p-type thermoelectric materials Ag0.208Sb0.275Te0.517 with enhanced power factor were prepared by high pressure and high temperature (HPHT) method. The samples are near single phase AgSbTe2 with a very small quantity of impurities including Ag2Te and Te. The concentration of impurities decreases with an increase of synthetic pressure. The synthetic pressure-dependent transport properties including electrical resistivity, Seebeck coefficient and power factor were studied at room temperature. We find the power factor of the sample prepared at the synthetic pressure of 2.1 GPa reaches a maximum value of 14.6 μW cm−1 K−2, which is about two times higher than that of the same sample prepared at normal pressure (6.9 μW cm−1 K−2).  相似文献   

10.
The effect of gallium on the temperature dependences (5 K ≤ T ≤ 300 K) of Seebeck coefficient α, electrical conductivity σ, thermal conductivity k, and thermoelectric efficiency Z of mixed p-(Bi0.5Sb0.5)2Te3 semiconductor single crystals is studied. The hole concentration decreases upon gallium doping; that is, gallium causes a donor effect. The Seebeck coefficient increases anomalously, i.e., much higher than it should be at the detected decrease in the hole concentration. This leads to an enhancement of the thermoelectric power. The observed changes in the Seebeck coefficient indicate a noticeable gallium-induced change in the density of states in the valence band.  相似文献   

11.
Microstructures and thermoelectric properties of Ge1Sb2Te4 and Ge2Sb2Te5 chalcogenide semiconductors have been investigated to explore the possibility of their thermoelectric applications. The phase transformation from the face-centered cubic to hexagonal structure was observed in Ge2Sb2Te5 compounds prepared by the melt spinning technique. The Seebeck coefficient and electrical resistivity of the alloys were increased due to the enhanced scattering of charge carriers at grain boundaries. The maximum power factors of the rapidly solidified Ge1Sb2Te4 and Ge2Sb2Te5 attained 0.975×10-3 W m-1K-2 at 750 K and 0.767×10-3 W m-1K-2 at 643 K respectively, higher than those of water quenched counterparts, implying that thermoelectric properties of GeSbTe based layered compounds can be improved by grain refinement. The present results show this class of chalcogenide semiconductors is promising for thermoelectric applications. PACS  84.60.Rb; 81.05.Hd; 72.20.Pa; 64.70.Kb; 61.66.Fn  相似文献   

12.
The effect of Ga doping on the temperature dependences (5 K ≤ T ≤ 300 K) of the Seebeck coefficient α, electrical conductivity σ, thermal conductivity coefficient κ, and thermoelectric figure of merit Z of p-(Bi0.5Sb0.5)2Te3 single crystals has been investigated. It has been shown that, upon Ga doping, the hole concentration decreases, the Seebeck coefficient increases, the electrical conductivity decreases, and the thermoelectric figure of merit increases. The observed variations in the Seebeck coefficient cannot be completely explained by the decrease in the hole concentration and indicate a noticeable variation in the density of states due to the Ga doping.  相似文献   

13.
范平  蔡兆坤  郑壮豪  张东平  蔡兴民  陈天宝 《物理学报》2011,60(9):98402-098402
本文采用离子束溅射Bi/Te和Sb/Te二元复合靶,直接制备n型Bi2Te3热电薄膜和p型Sb2Te3热电薄膜.在退火时间同为1 h的条件下,对所制备的Bi2Te3薄膜和Sb2Te3薄膜进行不同温度的退火处理,并对其热电性能进行表征.结果表明,在退火温度为150 ℃时,制备的n型Bi2Te3关键词: 薄膜温差电池 2Te3薄膜')" href="#">Sb2Te3薄膜 2Te3薄膜')" href="#">Bi2Te3薄膜 离子束溅射  相似文献   

14.
Partially filled polycrystalline p‐type skutterudites of nominal compositions Ybx Co3FeSb12 were synthesized and their thermoelectric properties characterized. The compositions and filling fractions were confirmed with a combination of Rietveld refinement and elemental analysis. The thermoelectric properties were evaluated from 300 K to 810 K. The Seebeck coefficient and resistivity increase while the thermal conductivity decreases with increasing Yb content. A maximum ZT value of 0.85 was obtained at 810 K. This work is part of a continuing effort to enhance the thermoelectric properties of p‐type skutterudites, as this class of materials continues to be of interest for thermoelectrics applications. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
Zn掺杂p型Ba8Ga16ZnxGe30-x笼合物的合成及热电性能   总被引:1,自引:0,他引:1       下载免费PDF全文
邓书康  唐新峰  张清杰 《物理学报》2007,56(8):4983-4988
用熔融法结合放电等离子烧结方法合成了Zn掺杂单相p型Ge基Ⅰ型笼合物Ba8Ga16ZnxGe30-x(x=3, 4, 5, 6),探索Zn取代Ge对其热电性能的影响规律,结果表明:所制备的Ba8Ga16ZnxGe30-x化合物为p型传导,随Zn取代量x关键词: p型笼合物 合成 热电性能  相似文献   

16.
To identify thermoelectric materials containing abundant, low-cost and non-toxicelements, we have studied the electronic structures and thermoelectric properties of(Mg2X)2/(Mg2Y)2 (X, Y = Si, Ge, Sn) superlattices withstate-of-the-art first-principles calculations using a modified Becke and Johnson (mBJ)exchange potential. Our results show that (Mg2Ge)2/ (Mg2Sn)2 and(Mg2Si)2/(Mg2Sn)2 are semi-metals using mBJ plusspin-orbit coupling (mBJ +SOC), while (Mg2Si)2/ (Mg2Ge)2 ispredicted to be a direct-gap semiconductor with a mBJ gap value of 0.46 eV andmBJ + SOC gap valueof 0.44 eV. Thermoelectric properties are predicted by through solving the Boltzmanntransport equations within the constant scattering time approximation. It is found that(Mg2Si)2/(Mg2Ge)2 has a larger Seebeck coefficient andpower factor than (Mg2Ge)2/ (Mg2Sn)2 and(Mg2Si)2/(Mg2Sn)2 for both p-type and n-type doping. Thedetrimental influence of SOC on the power factor of p-type (Mg2X)2/(Mg2Y)2 (X, Y = Si, Ge, Sn) is analyzed as afunction of the carrier concentration, but there is a negligible SOC effect for n-type.These results can be explained by the influence of SOC on their valence and conductionbands near the Fermi level.  相似文献   

17.
Bulk polycrystalline Bi85Sb15−xGex (x=0, 0.5, 1, 1.5, 2) composites were prepared by mechanical alloying followed by pressureless sintering. The thermoelectric properties were studied in the temperature range of 77–300 K. The results indicate that increasing the Ge concentration causes the Seebeck coefficient to change sign from negative to positive. Moreover, it is found that the maximum value of the Seebeck coefficient can be precisely controlled with the Ge concentration. The maximum dimensionless figure of merit reaches 0.07 at 140 K. These results suggest that the preparation of p-type Bi–Sb alloys is possible by using the Ge-doping approach.  相似文献   

18.
X-ray photoelectron core-level and valence-band spectra for pristine and Ar+-ion irradiated (0 0 1) surfaces of AgCd2GaS4 and AgCd2GaSe4 single crystals grown, respectively, by the Bridgman method and the method of direct crystallization have been measured in the present work. The X-ray photoelectron spectroscopy (XPS) results reveal high chemical stability of (0 0 1) surfaces of AgCd2GaS4 and AgCd2GaSe4 single crystals. Electronic structure of AgCd2GaS4 has been calculated employing the full potential linearized augmented plane wave method. For the AgCd2GaS4 compound, the X-ray emission bands representing the energy distribution of the valence Ag d-, Cd d-, Ga p- and S p-like states were recorded and compared on a common energy scale with the XPS valence-band spectrum. The theoretical and experimental data regarding the occupation of the valence band of AgCd2GaS4 were found to be in excellent agreement to each other. Second harmonic generation (SHG) efficiency of AgCd2GaS4 by using the 320 ns CO laser at 5.5 μm has been recorded within the temperature range 80–300 K. Substantial increase of the photoinduced SHG which in turn is substantially dependent on the temperature has been detected for the AgCd2GaS4 compound.  相似文献   

19.
Anisotropic tuning is of crucial importance for designing and developing high-performance thermoelectric materials. Here, a prominent anisotropic thermoelectric characteristic of Ag-substituted misfit-layered (SnS)1.2(TiS2)2 alloys is investigated in the perpendicular (in-plane) and parallel (out-of-plane) to the pressing direction. In the in-plane direction, the (AgxSn1-xS)1.2(TiS2)2 alloys possess a highest power factor of 0.86 mW K−2 m−1 at 520 K, while in the out-of-plane direction the lowest lattice thermal conductivity (0.37 W K−1 m−1) is achieved, which is driven by the natural intercalated structure where the out-of-plane phonon is strongly scattered without affecting the in-plane mobility. Moreover, along the in-plane orientation, the introduced point defects due to the substitution of Sn by Ag trigger a significant reduction of lattice thermal conductivity. In contrast, along the out-of-plane orientation, the decreased carrier concentration enables a large Seebeck coefficient and power factor, ultimately ensuring high thermoelectric performance. The present finding in the misfit-layered chalcogenide opens up a new route to manipulating thermoelectrics via anisotropy engineering.  相似文献   

20.
CuAlO2 with high theoretical thermoelectric performance has potential applications in thermal energy conversion. Herein, multi-wall carbon nanotubes (MWCNTs)/CuAlO2 composite tablets are prepared by using different amounts of MWCNTs and solid paraffin binder, where MWCNTs served as a conductive agent and rendered three orders of magnitude increase in electrical conductivity. Seebeck coefficient of the composites was reduced with increasing MWCNTs content. Consequently, an optimal room-temperature thermoelectric power factor (PF) of 1.31 μW m−1K−2 has been rendered by MWCNTs/CuAlO2 composite tablet with 1 wt % MWCNTs. Moreover, PF value increased with increasing temperature after a slight decrease at 333 K, which can be ascribed to the modulation of electrical conductivity. Current work provides an effective strategy to improve thermoelectric performance of CuAlO2 materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号