首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
 We prove that for every 2-connected planar graph the pathwidth of its geometric dual is less than the pathwidth of its line graph. This implies that pathwidth(H)≤ pathwidth(H *)+1 for every planar triangulation H and leads us to a conjecture that pathwidth(G)≤pathwidth(G *)+1 for every 2-connected graph G. Received: May 8, 2001 Final version received: March 26, 2002 RID="*" ID="*" I acknowledge support by EC contract IST-1999-14186, Project ALCOM-FT (Algorithms and Complexity - Future Technologies) and support by the RFBR grant N01-01-00235. Acknowledgments. I am grateful to Petr Golovach, Roland Opfer and anonymous referee for their useful comments and suggestions.  相似文献   

2.
A theta graph is a homeomorph of K2,3. In an embedded planar graph the local rotation at one degree-three vertex of a theta graph determines the local rotation at the other degree-three vertex. Using this observation, we give a characterization of planar graphs in terms of balance in an associated signed graph whose vertices are K1,3 subgraphs and whose edges correspond to theta graphs. © 1998 John Wiley & Sons, Inc. J Graph Theory 27: 17–20, 1998  相似文献   

3.
Given a vertex v of a graph G the second order degree of v denoted as d 2(v) is defined as the number of vertices at distance 2 from v.In this paper we address the following question:What are the sufficient conditions for a graph to have a vertex v such that d2(v) ≥ d(v),where d(v) denotes the degree of v? Among other results,every graph of minimum degree exactly 2,except four graphs,is shown to have a vertex of second order degree as large as its own degree.Moreover,every K-4-free graph or every maximal planar graph is shown to have a vertex v such that d2(v) ≥ d(v).Other sufficient conditions on graphs for guaranteeing this property are also proved.  相似文献   

4.
Given a graph G, a total k‐coloring of G is a simultaneous coloring of the vertices and edges of G with at most k colors. If Δ(G) is the maximum degree of G, then no graph has a total Δ‐coloring, but Vizing conjectured that every graph has a total (Δ + 2)‐coloring. This Total Coloring Conjecture remains open even for planar graphs. This article proves one of the two remaining planar cases, showing that every planar (and projective) graph with Δ ≤ 7 has a total 9‐coloring by means of the discharging method. © 1999 John Wiley & Sons, Inc. J Graph Theory 31: 67–73, 1999  相似文献   

5.
A straight-line planar drawing of a plane graph is called a convex drawing if every facial cycle is drawn as a convex polygon. Convex drawings of graphs is a well-established aesthetic in graph drawing, however not all planar graphs admit a convex drawing. Tutte [W.T. Tutte, Convex representations of graphs, Proc. of London Math. Soc. 10 (3) (1960) 304–320] showed that every triconnected plane graph admits a convex drawing for any given boundary drawn as a convex polygon. Thomassen [C. Thomassen, Plane representations of graphs, in: Progress in Graph Theory, Academic Press, 1984, pp. 43–69] gave a necessary and sufficient condition for a biconnected plane graph with a prescribed convex boundary to have a convex drawing.In this paper, we initiate a new notion of star-shaped drawing of a plane graph as a straight-line planar drawing such that each inner facial cycle is drawn as a star-shaped polygon, and the outer facial cycle is drawn as a convex polygon. A star-shaped drawing is a natural extension of a convex drawing, and a new aesthetic criteria for drawing planar graphs in a convex way as much as possible. We give a sufficient condition for a given set A of corners of a plane graph to admit a star-shaped drawing whose concave corners are given by the corners in A, and present a linear time algorithm for constructing such a star-shaped drawing.  相似文献   

6.
The class of planar graphs has unbounded treewidth, since the k×k grid, kN, is planar and has treewidth k. So, it is of interest to determine subclasses of planar graphs which have bounded treewidth. In this paper, we show that if G is an even-hole-free planar graph, then it does not contain a 9×9 grid minor. As a result, we have that even-hole-free planar graphs have treewidth at most 49.  相似文献   

7.
Anm-crown is the complete tripartite graphK 1, 1,m with parts of order 1, 1,m, and anm-claw is the complete bipartite graphK 1,m with parts of order 1,m, wherem ≥ 3. A vertexa of a graph Γ is calledweakly reduced iff the subgraph {x є Γ ‖a =x } consists of one vertex. A graph Γ is calledweakly reduced iff all its vertices are weakly reduced. In the present paper we classify all connected weakly reduced graphs without 3-crowns, all of whose μ-subgraphs are regular graphs of constant nonzero valency. In particular, we generalize the characterization of Grassman and Johnson graphs due to Numata, and the characterization of connected reduced graphs without 3-claws due to Makhnev. Translated fromMatematicheskie Zametki, Vol. 67, No. 6, pp. 874–881, June, 2000. This research was supported by the Russian Foundation for Basic Research under grant No. 99-01-00462.  相似文献   

8.
Kostochka  Alexandr  Tashkinov  Vladimir 《Order》2003,20(3):239-253
It is known that the edge set of a 2-edge-connected 3-regular graph can be decomposed into paths of length 3. W. Li asked whether the edge set of every 2-edge-connected graph can be decomposed into paths of length at least 3. The graphs C 3, C 4, C 5, and K 4e have no such decompositions. We construct an infinite sequence {F i } i=0 of nondecomposable graphs. On the other hand, we prove that every other 2-edge-connected graph has a desired decomposition. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
Clique-Helly and hereditary clique-Helly graphs are polynomial-time recognizable. Recently, we presented a proof that the clique graph recognition problem is NP-complete [L. Alcón, L. Faria, C.M.H. de Figueiredo, M. Gutierrez, Clique graph recognition is NP-complete, in: Proc. WG 2006, in: Lecture Notes in Comput. Sci., vol. 4271, Springer, 2006, pp. 269-277]. In this work, we consider the decision problems: given a graph G=(V,E) and an integer k≥0, we ask whether there exists a subset VV with |V|≥k such that the induced subgraph G[V] of G is, variously, a clique, clique-Helly or hereditary clique-Helly graph. The first problem is clearly NP-complete, from the above reference; we prove that the other two decision problems mentioned are NP-complete, even for maximum degree 6 planar graphs. We consider the corresponding maximization problems of finding a maximum induced subgraph that is, respectively, clique, clique-Helly or hereditary clique-Helly. We show that these problems are Max SNP-hard, even for maximum degree 6 graphs. We show a general polynomial-time -approximation algorithm for these problems when restricted to graphs with fixed maximum degree Δ. We generalize these results to other graph classes. We exhibit a polynomial 6-approximation algorithm to minimize the number of vertices to be removed in order to obtain a hereditary clique-Helly subgraph.  相似文献   

10.
The well known “real-life examples” of small world graphs, including the graph of binary relation: “two persons on the earth know each other” contains cliques, so they have cycles of order 3 and 4. Some problems of Computer Science require explicit construction of regular algebraic graphs with small diameter but without small cycles. The well known examples here are generalised polygons, which are small world algebraic graphs i.e. graphs with the diameter dclog  k−1(v), where v is order, k is the degree and c is the independent constant, semiplanes (regular bipartite graphs without cycles of order 4); graphs that can be homomorphically mapped onto the ordinary polygons. The problem of the existence of regular graphs satisfying these conditions with the degree ≥k and the diameter ≥d for each pair k≥3 and d≥3 is addressed in the paper. This problem is positively solved via the explicit construction. Generalised Schubert cells are defined in the spirit of Gelfand-Macpherson theorem for the Grassmanian. Constructed graph, induced on the generalised largest Schubert cells, is isomorphic to the well-known Wenger’s graph. We prove that the family of edge-transitive q-regular Wenger graphs of order 2q n , where integer n≥2 and q is prime power, qn, q>2 is a family of small world semiplanes. We observe the applications of some classes of small world graphs without small cycles to Cryptography and Coding Theory.  相似文献   

11.
The family of well-orderly maps is a family of planar maps with the property that every connected planar graph has at least one plane embedding which is a well-orderly map. We show that the number of well-orderly maps with n nodes is at most 2αn+O(logn), where α≈4.91. A direct consequence of this is a new upper bound on the number p(n) of unlabeled planar graphs with n nodes, log2p(n)≤4.91n. The result is then used to show that asymptotically almost all (labeled or unlabeled), (connected or not) planar graphs with n nodes have between 1.85n and 2.44n edges. Finally we obtain as an outcome of our combinatorial analysis an explicit linear-time encoding algorithm for unlabeled planar graphs using, in the worst-case, a rate of 4.91 bits per node and of 2.82 bits per edge.  相似文献   

12.
 The main result of the papzer is that any planar graph with odd girth at least 10k−7 has a homomorphism to the Kneser graph G k 2 k +1, i.e. each vertex can be colored with k colors from the set {1,2,…,2k+1} so that adjacent vertices have no colors in common. Thus, for example, if the odd girth of a planar graph is at least 13, then the graph has a homomorphism to G 2 5, also known as the Petersen graph. Other similar results for planar graphs are also obtained with better bounds and additional restrictions. Received: June 14, 1999 Final version received: July 5, 2000  相似文献   

13.
Half-Transitive Graphs of Prime-Cube Order   总被引:6,自引:0,他引:6  
We call an undirected graph X half-transitive if the automorphism group Aut X of X acts transitively on the vertex set and edge set but not on the set of ordered pairs of adjacent vertices of X. In this paper we determine all half-transitive graphs of order p 3 and degree 4, where p is an odd prime; namely, we prove that all such graphs are Cayley graphs on the non-Abelian group of order p 3 and exponent p 2, and up to isomorphism there are exactly (p – 1)/2 such graphs. As a byproduct, this proves the uniqueness of Holt's half-transitive graph with 27 vertices.  相似文献   

14.
A (k, 1)‐coloring of a graph is a vertex‐coloring with k colors such that each vertex is permitted at most 1 neighbor of the same color. We show that every planar graph has at least cρn distinct (4, 1)‐colorings, where c is constant and ρ≈1.466 satisfies ρ3 = ρ2 + 1. On the other hand for any ε>0, we give examples of planar graphs with fewer than c(? + ε)n distinct (4, 1)‐colorings, where c is constant and . Let γ(S) denote the chromatic number of a surface S. For every surface S except the sphere, we show that there exists a constant c′ = c′(S)>0 such that every graph embeddable in S has at least c′2n distinct (γ(S), 1)‐colorings. © 2010 Wiley Periodicals, Inc. J Graph Theory 28:129‐136, 2011  相似文献   

15.
Let P(G, λ) be the chromatic polynomial of a graph G. A graph G is chromatically unique if for any graph H, P(H, λ) = P(G, λ) implies H is isomorphic to G. Liu et al. [Liu, R. Y., Zhao, H. X., Ye, C. F.: A complete solution to a conjecture on chromatic uniqueness of complete tripartite graphs. Discrete Math., 289, 175–179 (2004)], and Lau and Peng [Lau, G. C., Peng, Y. H.: Chromatic uniqueness of certain complete t-partite graphs. Ars Comb., 92, 353–376 (2009)] show that K(p − k, p − i, p) for i = 0, 1 are chromatically unique if pk + 2 ≥ 4. In this paper, we show that if 2 ≤ i ≤ 4, the complete tripartite graph K(p − k, p − i, p) is chromatically unique for integers ki and pk 2/4 + i + 1.  相似文献   

16.
A clique is a set of pairwise adjacent vertices in a graph. We determine the maximum number of cliques in a graph for the following graph classes: (1) graphs with n vertices and m edges; (2) graphs with n vertices, m edges, and maximum degree Δ; (3) d-degenerate graphs with n vertices and m edges; (4) planar graphs with n vertices and m edges; and (5) graphs with n vertices and no K5-minor or no K3,3-minor. For example, the maximum number of cliques in a planar graph with n vertices is 8(n − 2). Research supported by a Marie Curie Fellowship of the European Community under contract 023865, and by the projects MCYT-FEDER BFM2003-00368 and Gen. Cat 2001SGR00224.  相似文献   

17.
 In this article we present characterizations of locally well-dominated graphs and locally independent well-dominated graphs, and a sufficient condition for a graph to be k-locally independent well-dominated. Using these results we show that the irredundance number, the domination number and the independent domination number can be computed in polynomial time within several classes of graphs, e.g., the class of locally well-dominated graphs. Received: September 13, 2001 Final version received: May 17, 2002 RID="*" ID="*" Supported by the INTAS and the Belarus Government (Project INTAS-BELARUS 97-0093) RID="†" ID="†" Supported by RUTCOR RID="*" ID="*" Supported by the INTAS and the Belarus Government (Project INTAS-BELARUS 97-0093) 05C75, 05C69 Acknowledgments. The authors thank the referees for valuable suggestions.  相似文献   

18.
 Assume that G is a 3-colourable connected graph with e(G) = 2v(G) −k, where k≥ 4. It has been shown that s 3(G) ≥ 2 k −3, where s r (G) = P(G,r)/r! for any positive integer r and P(G, λ) is the chromatic polynomial of G. In this paper, we prove that if G is 2-connected and s 3(G) < 2 k −2, then G contains at most v(G) −k triangles; and the upper bound is attained only if G is a graph obtained by replacing each edge in the k-cycle C k by a 2-tree. By using this result, we settle the problem of determining if W(n, s) is χ-unique, where W(n, s) is the graph obtained from the wheel W n by deleting all but s consecutive spokes. Received: January 29, 1999 Final version received: April 8, 2000  相似文献   

19.
We study planar graphs embedded in the plane that have chemical applications: the degrees of all vertices are 3 or 2, all internal faces but one or two arer-gons, and each internal face is a simply connected domain. For wide classes of such graphs, we solve the existence problem for embeddings of the graph metric on the vertices in multidimensional cubes or cubical lattices preserving or doubling all the distances. Incidentally we present a complete classification of some interesting families of such graphs. Translated fromMatematicheskie Zametki, Vol. 68, No. 3, pp. 339–352, September, 2000.  相似文献   

20.
A graph G is coordinated if the minimum number of colors that can be assigned to the cliques of H in such a way that no two cliques with non-empty intersection receive the same color is equal to the maximum number of cliques of H with a common vertex, for every induced subgraph H of G. Coordinated graphs are a subclass of perfect graphs. The list of minimal forbidden induced subgraphs for the class of coordinated graphs is not known. In this paper, we present a partial result in this direction, that is, we characterize coordinated graphs by minimal forbidden induced subgraphs when the graph is either a line graph, or the complement of a forest. F. Bonomo, F. Soulignac, and G. Sueiro’s research partially supported by UBACyT Grant X184 (Argentina), and CNPq under PROSUL project Proc. 490333/2004-4 (Brazil). The research of G. Durán is partially supported by FONDECyT Grant 1080286 and Millennium Science Institute “Complex Engineering Systems” (Chile), and CNPq under PROSUL project Proc. 490333/2004-4 (Brazil).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号