首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we present results on convex drawings of hierarchical graphs and clustered graphs. A convex drawing is a planar straight-line drawing of a plane graph, where every facial cycle is drawn as a convex polygon. Hierarchical graphs and clustered graphs are useful graph models with structured relational information. Hierarchical graphs are graphs with layering structures; clustered graphs are graphs with recursive clustering structures.We first present the necessary and sufficient conditions for a hierarchical plane graph to admit a convex drawing. More specifically, we show that the necessary and sufficient conditions for a biconnected plane graph due to Thomassen [C. Thomassen, Plane representations of graphs, in: J.A. Bondy, U.S.R. Murty (Eds.), Progress in Graph Theory, Academic Press, 1984, pp. 43–69] remains valid for the case of a hierarchical plane graph. We then prove that every internally triconnected clustered plane graph with a completely connected clustering structure admits a “fully convex drawing,” a planar straight-line drawing such that both clusters and facial cycles are drawn as convex polygons. We also present algorithms to construct such convex drawings of hierarchical graphs and clustered graphs.  相似文献   

2.
In this paper, we study a new problem of convex drawing of planar graphs with non-convex boundary constraints, and call a drawing in which every inner-facial cycle is drawn as a convex polygon an inner-convex drawing. It is proved that every triconnected plane graph with the boundary fixed with a star-shaped polygon whose kernel has a positive area admits an inner-convex drawing. We also prove that every four-connected plane graph whose boundary is fixed with a crown-shaped polygon admits an inner-convex drawing. We present linear time algorithms to construct inner-convex drawings for both cases.  相似文献   

3.
In this paper we study the problem of computing an upward straight-line embedding of a planar DAG (directed acyclic graph) G into a point set S, i.e. a planar drawing of G such that each vertex is mapped to a point of S, each edge is drawn as a straight-line segment, and all the edges are oriented according to a common direction. In particular, we show that no biconnected DAG admits an upward straight-line embedding into every point set in convex position. We provide a characterization of the family of DAGs that admit an upward straight-line embedding into every convex point set such that the points with the largest and the smallest y-coordinate are consecutive in the convex hull of the point set. We characterize the family of DAGs that contain a Hamiltonian directed path and that admit an upward straight-line embedding into every point set in general position. We also prove that a DAG whose underlying graph is a tree does not always have an upward straight-line embedding into a point set in convex position and we describe how to construct such an embedding for a DAG whose underlying graph is a path. Finally, we give results about the embeddability of some sub-classes of DAGs whose underlying graphs are trees on point set in convex and in general position.  相似文献   

4.
In a graph, a cluster is a set of vertices, and two clusters are said to be non-intersecting if they are disjoint or one of them is contained in the other. A clustered graph C consists of a graph G and a set of non-intersecting clusters. In this paper, we assume that C has a compound planar drawing and each cluster induces a biconnected subgraph. Then we show that such a clustered graph admits a drawing in the plane such that (i) edges are drawn as straight-line segments with no edge crossing and (ii) the boundary of the biconnected subgraph induced by each cluster is a convex polygon.  相似文献   

5.
We study realizations of periodic graphs in Euclidean spaces with each vertex in the center of gravity of its neighbors. As a first application, we show that every planar, 3-connected, 2-periodic graph can be drawn into the plane with convex faces such that the drawing realizes every combinatorial automorphism of the graph as an isometric symmetry. This extends results by Thomassen and by Mani-Levitska, Guigas, and Klee.  相似文献   

6.
This paper addresses the problem of finding rectangular drawings of plane graphs, in which each vertex is drawn as a point, each edge is drawn as a horizontal or a vertical line segment, and the contour of each face is drawn as a rectangle. A graph is a 2–3 plane graph if it is a plane graph and each vertex has degree 3 except the vertices on the outer face which have degree 2 or 3. A necessary and sufficient condition for the existence of a rectangular drawing has been known only for the case where exactly four vertices of degree 2 on the outer face are designated as corners in a 2–3 plane graph G. In this paper we establish a necessary and sufficient condition for the existence of a rectangular drawing of G for the general case in which no vertices are designated as corners. We also give a linear-time algorithm to find a rectangular drawing of G if it exists.  相似文献   

7.
We present a short proof of the following theorems simultaneously: Kuratowski's theorem, Fary's theorem, and the theorem of Tutte that every 3-connected planar graph has a convex representation. We stress the importance of Kuratowski's theorem by showing how it implies a result of Tutte on planar representations with prescribed vertices on the same facial cycle as well as the planarity criteria of Whitney, MacLane, Tutte, and Fournier (in the case of Whitney's theorem and MacLane's theorem this has already been done by Tutte). In connection with Tutte's planarity criterion in terms of non-separating cycles we give a short proof of the result of Tutte that the induced non-separating cycles in a 3-connected graph generate the cycle space. We consider each of the above-mentioned planarity criteria for infinite graphs. Specifically, we prove that Tutte's condition in terms of overlap graphs is equivalent to Kuratowski's condition, we characterize completely the infinite graphs satisfying MacLane's condition and we prove that the 3-connected locally finite ones have convex representations. We investigate when an infinite graph has a dual graph and we settle this problem completely in the locally finite case. We show by examples that Tutte's criterion involving non-separating cycles has no immediate extension to infinite graphs, but we present some analogues of that criterion for special classes of infinite graphs.  相似文献   

8.
It is important to minimize the area of a drawing of a graph, so that the drawing can fit in a small drawing-space. It is well-known that a planar graph with n vertices admits a planar straight-line grid drawing with O(n2) area [H. de Fraysseix, J. Pach, R. Pollack, How to draw a planar graph on a grid, Combinatorica 10(1) (1990) 41-51; W. Schnyder, Embedding planar graphs on the grid, in: Proceedings of the First ACM-SIAM Symposium on Discrete Algorithms, 1990, pp. 138-148]. Unfortunately, there is a matching lower-bound of Ω(n2) on the area-requirements of the planar straight-line grid drawings of certain planar graphs. Hence, it is important to investigate important categories of planar graphs to determine if they admit planar straight-line grid drawings with o(n2) area.In this paper, we investigate an important category of planar graphs, namely, outerplanar graphs. We show that an outerplanar graph G with degree d admits a planar straight-line grid drawing with area O(dn1.48) in O(n) time. This implies that if d=o(n0.52), then G can be drawn in this manner in o(n2) area.  相似文献   

9.
Carsten Thomassen 《Order》1989,5(4):349-361
A plane Hasse representation of an acyclic oriented graph is a drawing of the graph in the Euclidean plane such that all arcs are straight-line segments directed upwards and such that no two arcs cross. We characterize completely those oriented graphs which have a plane Hasse representation such that all faces are bounded by convex polygons. From this we derive the Hasse representation analogue, due to Kelly and Rival of Fary's theorem on straight-line representations of planar graphs and the Kuratowski type theorem of Platt for acyclic oriented graphs with only one source and one sink. Finally, we describe completely those acyclic oriented graphs which have a vertex dominating all other vertices and which have no plane Hasse representation, a problem posed by Trotter.  相似文献   

10.
A current topic in graph drawing is the question how to draw two edge sets on the same vertex set, the so-called simultaneous drawing of graphs. The goal is to simultaneously find a nice drawing for both of the sets. It has been found out that only restricted classes of planar graphs can be drawn simultaneously using straight lines and without crossings within the same edge set. In this paper, we negatively answer one of the most often posted open questions namely whether any two trees with the same vertex set can be drawn simultaneously crossing-free in a straight-line way.  相似文献   

11.
We present a short proof of the theorem of Tutte that every planar 3‐connected graph has a drawing in the plane such that every vertex which is not on the outer cycle is the barycenter of its neighbors. Moreover, this holds for any prescribed representation of the outer cycle. © 2004 Wiley Periodicals, Inc. J Graph Theory 45: 275–280, 2004  相似文献   

12.
拓扑图论中的一个基本问题就是要决定图在一个(可定向)曲面上的嵌入之数目(既嵌入的柔性问题).H.Whitney的经典结果表明:一个3-连通图至多有一个平面嵌入;C.Thomassen的LEW-嵌入(大边宽度)理论将这一结果推广到一般的可定向曲面.本文给出了几个关于一般可定向曲面上嵌入图的唯一性定理.结果表明:一些具有大的面迹的可定向嵌入仍然具有唯一性.这在本质上推广了C.Thomassen在LEW-嵌入方面的工作.  相似文献   

13.
A visibility drawing of a plane graph G is a drawing of G where each vertex is drawn as a horizontal line segment and each edge is drawn as a vertical line segment such that the line segments use only grid points as their endpoints. The area of a visibility drawing is the area of the smallest rectangle on the grid which encloses the drawing. A minimum-area visibility drawing of a plane graph G is a visibility drawing of G where the area is the minimum among all possible visibility drawings of G. The area minimization for grid visibility representation of planar graphs is NP-hard. However, the problem can be solved for a fixed planar embedding of a hierarchically planar graph in quadratic time. In this paper, we give a polynomial-time algorithm to obtain minimum-area visibility drawings of plane 3-trees.  相似文献   

14.
Drawings of planar graphs with few slopes and segments   总被引:1,自引:0,他引:1  
We study straight-line drawings of planar graphs with few segments and few slopes. Optimal results are obtained for all trees. Tight bounds are obtained for outerplanar graphs, 2-trees, and planar 3-trees. We prove that every 3-connected plane graph on n vertices has a plane drawing with at most segments and at most 2n slopes. We prove that every cubic 3-connected plane graph has a plane drawing with three slopes (and three bends on the outerface). In a companion paper, drawings of non-planar graphs with few slopes are also considered.  相似文献   

15.
A planar ordered set has a triangle-free, planar covering graph; on the other hand, there are nonplanar ordered sets whose covering graphs are planar. We show thatevery triangle-free planar graph has a planar upward drawing. This planar upward drawing can be constructed in time, polynomial in the number of vertices.Our results shed light on the apparently difficult problem, of long-standing, whether there is aneffective planarity-testing procedure for an ordered set.Supported in part by the Alexander von Humboldt Stiftung.Supported in part by the Deutsche Forschungsgemeinschaft.  相似文献   

16.
Gray Code Enumeration of Plane Straight-Line Graphs   总被引:2,自引:0,他引:2  
We develop Gray code enumeration schemes for geometric straight-line graphs in the plane. The considered graph classes include plane graphs, connected plane graphs, and plane spanning trees. Previous results were restricted to the case where the underlying vertex set is in convex position. Research supported by the FWF Joint Research Project Industrial Geometry S9205-N12 and Projects MCYT-FEDER BFM2003-00368 and Gen. Cat 2005SGR00692.  相似文献   

17.
We investigate vertex‐transitive graphs that admit planar embeddings having infinite faces, i.e., faces whose boundary is a double ray. In the case of graphs with connectivity exactly 2, we present examples wherein no face is finite. In particular, the planar embeddings of the Cartesian product of the r‐valent tree with K2 are comprehensively studied and enumerated, as are the automorphisms of the resulting maps, and it is shown for r = 3 that no vertex‐transitive group of graph automorphisms is extendable to a group of homeomorphisms of the plane. We present all known families of infinite, locally finite, vertex‐transitive graphs of connectivity 3 and an infinite family of 4‐connected graphs that admit planar embeddings wherein each vertex is incident with an infinite face. © 2003 Wiley Periodicals, Inc. J Graph Theory 42: 257–275, 2003  相似文献   

18.
A non-crossing geometric graph is a graph embedded on a set of points in the plane with non-crossing straight line segments. In this paper we present a general framework for enumerating non-crossing geometric graphs on a given point set. Applying our idea to specific enumeration problems, we obtain faster algorithms for enumerating plane straight-line graphs, non-crossing spanning connected graphs, non-crossing spanning trees, and non-crossing minimally rigid graphs. Our idea also produces efficient enumeration algorithms for other graph classes, for which no algorithm has been reported so far, such as non-crossing matchings, non-crossing red-and-blue matchings, non-crossing k-vertex or k-edge connected graphs, or non-crossing directed spanning trees. The proposed idea is relatively simple and potentially applies to various other problems of non-crossing geometric graphs.  相似文献   

19.
Let G be a plane graph of girth at least 4. Two cycles of G are intersecting if they have at least one vertex in common. In this paper, we show that if a plane graph G has neither intersecting 4-cycles nor a 5-cycle intersecting with any 4-cycle, then G is 3-choosable, which extends one of Thomassen’s results [C. Thomassen, 3-list-coloring planar graphs of girth 5, J. Combin. Theory Ser. B 64 (1995) 101-107].  相似文献   

20.
We study the problem how to draw a planar graph crossing-free such that every vertex is incident to an angle greater than π. In general a plane straight-line drawing cannot guarantee this property. We present algorithms which construct such drawings with either tangent-continuous biarcs or quadratic Bézier curves (parabolic arcs), even if the positions of the vertices are predefined by a given plane straight-line drawing of the graph. Moreover, the graph can be drawn with circular arcs if the vertices can be placed arbitrarily. The topic is related to non-crossing drawings of multigraphs and vertex labeling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号