首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Let k be a fixed, positive integer. We give an algorithm which computes the Tutte polynomial of any graph G of treewidth at most k in time O(n2+7 log2 c), where c is twice the number of partitions of a set with 3k + 3 elements and n the number of vertices of G.  相似文献   

2.
In the upper bound graph of a poset P, the vertex set is V(P) and xy is an edge if there exists an mV(P) with x,yPm. We show some characterizations on split upper bound graphs, threshold upper bound graphs and difference upper bound graphs in terms of m-subposets and canonical posets.  相似文献   

3.
Remarks on the bondage number of planar graphs   总被引:4,自引:0,他引:4  
The bondage number b(G) of a nonempty graph G is the cardinality of a smallest set of edges whose removal from G results in a graph with domination number greater than the domination number γ(G) of G. In 1998, J.E. Dunbar, T.W. Haynes, U. Teschner, and L. Volkmann posed the conjecture b(G)Δ(G)+1 for every nontrivial connected planar graph G. Two years later, L. Kang and J. Yuan proved b(G)8 for every connected planar graph G, and therefore, they confirmed the conjecture for Δ(G)7. In this paper we show that this conjecture is valid for all connected planar graphs of girth g(G)4 and maximum degree Δ(G)5 as well as for all not 3-regular graphs of girth g(G)5. Some further related results and open problems are also presented.  相似文献   

4.
We solve a conjecture of Roditty, Shoham and Yuster [P.J. Cameron (Ed.), Problems from the 17th British Combinatorial Conference, Discrete Math., 231 (2001) 469-478; Y. Roditty, B. Shoham, R. Yuster, Monotone paths in edge-ordered sparse graphs, Discrete Math. 226 (2001) 411-417] on the caterpillar arboricity of planar graphs. We prove that for every planar graph G=(V,E), the edge set E can be partitioned into four subsets (Ei)1?i?4 in such a way that G[Ei], for 1?i?4, is a forest of caterpillars. We also provide a linear-time algorithm which constructs for a given planar graph G, four forests of caterpillars covering the edges of G.  相似文献   

5.
6.
The study of hyperbolic graphs is an interesting topic since the hyperbolicity of a geodesic metric space is equivalent to the hyperbolicity of a graph related to it.The main result in this paper is a very simple characterization of the hyperbolicity of a large class of periodic planar graphs.  相似文献   

7.
The network flow interdiction problem asks to reduce the value of a maximum flow in a given network as much as possible by removing arcs and vertices of the network constrained to a fixed budget. Although the network flow interdiction problem is strongly NP-complete on general networks, pseudo-polynomial algorithms were found for planar networks with a single source and a single sink and without the possibility to remove vertices. In this work, we introduce pseudo-polynomial algorithms that overcome various restrictions of previous methods. In particular, we propose a planarity-preserving transformation that enables incorporation of vertex removals and vertex capacities in pseudo-polynomial interdiction algorithms for planar graphs. Additionally, a new approach is introduced that allows us to determine in pseudo-polynomial time the minimum interdiction budget needed to remove arcs and vertices of a given network such that the demands of the sink node cannot be completely satisfied anymore. The algorithm works on planar networks with multiple sources and sinks satisfying that the sum of the supplies at the sources equals the sum of the demands at the sinks. A simple extension of the proposed method allows us to broaden its applicability to solve network flow interdiction problems on planar networks with a single source and sink having no restrictions on the demand and supply. The proposed method can therefore solve a wider class of flow interdiction problems in pseudo-polynomial time than previous pseudo-polynomial algorithms and is the first pseudo-polynomial algorithm that can solve non-trivial planar flow interdiction problems with multiple sources and sinks. Furthermore, we show that the k-densest subgraph problem on planar graphs can be reduced to a network flow interdiction problem on a planar graph with multiple sources and sinks and polynomially bounded input numbers.  相似文献   

8.
In this paper we construct inverse bijections between two sequences of finite sets. One sequence is defined by planar diagrams and the other by lattice walks. In [13] it is shown that the number of elements in these two sets are equal. This problem and the methods we use are motivated by the representation theory of the exceptional simple Lie algebra G 2. However in this account we have emphasised the combinatorics.  相似文献   

9.
In 1995, Voigt constructed a planar triangle-free graph that is not 3-list-colorable. It has 166 vertices. Gutner then constructed such a graph with 164 vertices. We present two more graphs with these properties. The first graph has 97 vertices and a failing list assignment using triples from a set of six colors, while the second has 109 vertices and a failing list assignment using triples from a set of five colors.  相似文献   

10.
In Thomassen (1995) [4], Thomassen proved that planar graphs of girth at least 5 are 3-choosable. In Li (2009) [3], Li improved Thomassen’s result by proving that planar graphs of girth 4 with no 4-cycle sharing a vertex with another 4- or 5-cycle are 3-choosable. In this paper, we prove that planar graphs of girth 4 with no 4-cycle sharing an edge with another 4- or 5-cycle are 3-choosable. It is clear that our result strengthens Li’s result.  相似文献   

11.
Let U be the set of cubic planar hamiltonian graphs, A the set of graphs G in U such that G-v is hamiltonian for any vertex v of G, B the set of graphs G in U such that G-e is hamiltonian for any edge e of G, and C the set of graphs G in U such that there is a hamiltonian path between any two different vertices of G. With the inclusion and/or exclusion of the sets A,B, and C, U is divided into eight subsets. In this paper, we prove that there is an infinite number of graphs in each of the eight subsets.  相似文献   

12.
We prove that for each k?0, the probability that a root vertex in a random planar graph has degree k tends to a computable constant dk, so that the expected number of vertices of degree k is asymptotically dkn, and moreover that kdk=1. The proof uses the tools developed by Giménez and Noy in their solution to the problem of the asymptotic enumeration of planar graphs, and is based on a detailed analysis of the generating functions involved in counting planar graphs. However, in order to keep track of the degree of the root, new technical difficulties arise. We obtain explicit, although quite involved expressions, for the coefficients in the singular expansions of the generating functions of interest, which allow us to use transfer theorems in order to get an explicit expression for the probability generating function p(w)=kdkwk. From this we can compute the dk to any degree of accuracy, and derive the asymptotic estimate dkck−1/2qk for large values of k, where q≈0.67 is a constant defined analytically.  相似文献   

13.
MacGillivary and Seyffarth [G. MacGillivray, K. Seyffarth, Domination numbers of planar graphs, J. Graph Theory 22 (1996) 213–229] proved that planar graphs of diameter two have domination number at most three. Goddard and Henning [W. Goddard, M.A. Henning, Domination in planar graphs with small diameter, J. Graph Theory 40 (2002) 1–25] showed that there is a unique planar graph of diameter two with domination number three. It follows that the total domination number of a planar graph of diameter two is at most three. In this paper, we consider the problem of characterizing planar graphs with diameter two and total domination number three. We say that a graph satisfies the domination-cycle property if there is some minimum dominating set of the graph not contained in any induced 5-cycle. We characterize the planar graphs with diameter two and total domination number three that satisfy the domination-cycle property and show that there are exactly thirty-four such planar graphs.  相似文献   

14.
We give a simple algorithm for finding a minimum weight odd circuit in planar graphs. By geometric duality, the same algorithm can be used to find minimum weight odd cuts. For general sparse graphs, the fastest known algorithms for these two problems take time and time, respectively.  相似文献   

15.
Length-bounded disjoint paths in planar graphs   总被引:1,自引:0,他引:1  
The following problem is considered: given: an undirected planar graph G=(V,E) embedded in , distinct pairs of vertices {r1,s1},…,{rk,sk} of G adjacent to the unbounded face, positive integers b1,…,bk and a function ; find: pairwise vertex-disjoint paths P1,…,Pk such that for each i=1,…,k, Pi is a risi-path and the sum of the l-length of all edges in Pi is at most bi. It is shown that the problem is NP-hard in the strong sense. A pseudo-polynomial-time algorithm is given for the case of k=2.  相似文献   

16.
Let G be a plane graph of girth at least 4. Two cycles of G are intersecting if they have at least one vertex in common. In this paper, we show that if a plane graph G has neither intersecting 4-cycles nor a 5-cycle intersecting with any 4-cycle, then G is 3-choosable, which extends one of Thomassen’s results [C. Thomassen, 3-list-coloring planar graphs of girth 5, J. Combin. Theory Ser. B 64 (1995) 101-107].  相似文献   

17.
Albert Guan 《Discrete Mathematics》2009,309(20):6044-6047
Given a (possibly improper) edge colouring F of a graph G, a vertex colouring of G is adapted toF if no colour appears at the same time on an edge and on its two endpoints. A graph G is called (for some positive integer k) if for any list assignment L to the vertices of G, with |L(v)|≥k for all v, and any edge colouring F of G, G admits a colouring c adapted to F where c(v)∈L(v) for all v. This paper proves that a planar graph G is adaptably 3-choosable if any two triangles in G have distance at least 2 and no triangle is adjacent to a 4-cycle.  相似文献   

18.
Some structural properties of planar graphs without 4-cycles are investigated. By the structural properties, it is proved that every planar graph G without 4-cycles is edge-(Δ(G)+1)-choosable, which perfects the result given by Zhang and Wu: If G is a planar graph without 4-cycles, then G is edge-t-choosable, where t=7 if Δ(G)=5, and otherwise t=Δ(G)+1.  相似文献   

19.
Min Chen 《Discrete Mathematics》2008,308(24):6216-6225
A proper vertex coloring of a graph G=(V,E) is acyclic if G contains no bicolored cycle. A graph G is acyclically L-list colorable if for a given list assignment L={L(v):vV}, there exists a proper acyclic coloring π of G such that π(v)∈L(v) for all vV. If G is acyclically L-list colorable for any list assignment with |L(v)|≥k for all vV, then G is acyclically k-choosable. In this paper we prove that every planar graph without 4-cycles and without two 3-cycles at distance less than 3 is acyclically 5-choosable. This improves a result in [M. Montassier, P. Ochem, A. Raspaud, On the acyclic choosability of graphs, J. Graph Theory 51 (2006) 281-300], which says that planar graphs of girth at least 5 are acyclically 5-choosable.  相似文献   

20.
《Discrete Mathematics》2023,346(4):113288
Square coloring is a variant of graph coloring where vertices within distance two must receive different colors. When considering planar graphs, the most famous conjecture (Wegner, 1977) states that 32Δ+1 colors are sufficient to square color every planar graph of maximum degree Δ. This conjecture has been proven asymptotically for graphs with large maximum degree. We consider here planar graphs with small maximum degree and show that 2Δ+7 colors are sufficient, which improves the best known bounds when 6?Δ?31.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号