首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In relation to design and modeling of sonochemical reactors, the hydrodynamic behaviour of a high-frequency ultrasonic reactor has been investigated. Residence time distribution (RTD) measurements have been performed by means of a tracer method. The influence of ultrasound on the response to an inlet pulse was evidenced. It was shown that the reactor behaves like a completely stirred tank reactor (CSTR) as soon as ultrasonic irradiation operates. Preliminary observations on acoustic streaming occurring within the reactor will also be presented.  相似文献   

2.
《Ultrasonics sonochemistry》2014,21(4):1585-1591
This paper investigates the production of biodiesel from palm oil using a combined mechanical stirred and ultrasonic reactor (MS–US). The incorporation of mechanical stirring into the ultrasonic reactor explored the further improvement the transesterification of palm oil. Initial reaction rate values were 54.1, 142.9 and 164.2 mmol/L min for the mechanical-stirred (MS), ultrasonic (US) and MS–US reactors, respectively. Suitable methanol to oil molar ratio and the catalyst loading values were found to be 6 and 1 of oil, respectively. The effect of ultrasonic operating parameters; i.e. frequency, location, and number of transducer, has been investigated. Based on the conversion yield at the reactor outlet after 1 h, the number of transducers showed a relevant role in the reaction rate. Frequency and transducer location would appear to have no significant effect. The properties of the obtained biodiesel (density, viscosity, pour point, and flash point) satisfy the ASTM standard. The combined MS–US reactors improved the reaction rate affording the methyl esters in higher yield.  相似文献   

3.
For meaningful assessment of results from laboratory and pilot plant trials, it is often necessary to know the mixing characteristics within the ultrasonic reactors. Previous workers have used conductivity measurements in an attempt to characterize the residence time distribution in ultrasonic reactors, but these results do not provide direct data on the mixing within the high power region adjacent to the ultrasonic probe tip. We overcome this difficulty through direct visualization of the mixing process within the high energy region close to the tip of the ultrasonic probe. Our analysis proceeds by determining an approximate turbulent diffusivity in a batch reactor arrangement for different values of ultrasonic energy input. For input electrical power levels between 70 and 120 W and a processing volume of 30 ml, the effective turbulent diffusivity varied from about 0.2 x 10(-3) to 0.7 x 10(-3)m(2)/s. We demonstrate that such results can be coupled to a suitable dispersion model to estimate the actual residence time distribution in flow-though arrangements when the through-put adds little additional mixing energy. Therefore, coupling the effective turbulent diffusivity identified in a batch reactor with a suitable dispersion model for the reactor offers an alternative approach to the deduction of RTD when determining the actual RTD in the high intensity zone of steady flow sonochemical reactors is problematic.  相似文献   

4.
Cavitation due to ultrasonic waves produces highly reactive oxidising species in water. As a result, it can be used to oxidise organic pollutants such as aromatic compounds in dilute aqueous solutions. Recent studies have demonstrated that reactors operating in the high frequency range (e.g. 500 kHz) are more efficient than reactors working at lower frequency (20 kHz) for the destruction of these kinds of contaminants. Our study describes the degradation of phenol with the help of a cylindrical ultrasonic apparatus that operates at 35 kHz (Sonitube-SODEVA). To date, the use of this type of reactor has not been reported. The reaction rates thus obtained were compared to those obtained at the same ultrasonic power (50 W) with more classical devices operating at 20 and 500 kHz. The general result is that in aqueous solution, the rate of phenol destruction is higher at 500 kHz than at 35 or 20 kHz. Addition of hydrogen peroxide and copper sulphate to the medium provides a different oxidative system that proceeds more efficiently at 35 kHz; the time of destruction was about one-third of the time needed at 500 kHz. It was also observed that the intermediate organic compounds are eliminated much faster at 35 kHz in comparison with the two frequencies. The observation of such different behaviour is not necessarily a pure frequency effect, but can be due to a response to other parameters such as the acoustic field and intensity.  相似文献   

5.
《中国物理 B》2021,30(10):104302-104302
The present study analyzes the effect of stirring on ultrasonic degradation experiments through acoustic field distribution, which provides a guidance for further improvement of the degradation rate of organic solutions. It is known that in order to eliminate the standing wave field formed by ultrasonic radiation in the water tank, the liquid in the water tank needs to be stirred and the corresponding distribution of acoustic field is simulated by using the finite element method(FEM).The standing wave leads to an uneven distribution of the acoustic field when it is not stirred, and disappears after being stirred, which increases the cavitation area in the ultrasonic cleaning tank. Then, the degradation experiment with agitation is carried out. The experimental results show that the degradation rate of the solution is higher than that when there is no agitation, which confirms the importance of the acoustic field distribution to ultrasonic degradation. In addition, it is clear that with the increase of the stirring speed, the degradation rate increases first and reaches a maximum at 600 rpm before decreasing. Finally, the distribution of flow field is simulated and analyzed.  相似文献   

6.
The effects of ultrasound on corn slurry saccharification yield and particle size distribution was studied in both batch and continuous-flow ultrasonic systems operating at a frequency of 20 kHz. Ground corn slurry (28% w/v) was prepared and sonicated in batches at various amplitudes (192–320 μmpeak-to-peak (p–p)) for 20 or 40 s using a catenoidal horn. Continuous flow experiments were conducted by pumping corn slurry at various flow rates (10–28 l/min) through an ultrasonic reactor at constant amplitude of 12 μmp–p. The reactor was equipped with a donut shaped horn. After ultrasonic treatment, commercial alpha- and gluco-amylases (STARGENTM 001) were added to the samples, and liquefaction and saccharification proceeded for 3 h. The sonicated samples were found to yield 2–3 times more reducing sugars than unsonicated controls. Although the continuous flow treatments released less reducing sugar compared to the batch systems, the continuous flow process was more energy efficient. The reduction of particle size due to sonication was approximately proportional to the dissipated ultrasonic energy regardless of the type of system used. Scanning electron microscopy (SEM) images were also used to observe the disruption of corn particles after sonication. Overall, the study suggests that both batch and continuous ultrasonication enhanced saccharification yields and reduced the particle size of corn slurry. However, due to the large volume involve in full scale processes, an ultrasonic continuous system is recommended.  相似文献   

7.
In this study, several process parameters that may contribute to the efficiency of ultrasound disinfection are examined on a pilot scale water disinfection system that mimics realistic circumstances as encountered in an industrial environment. The main parameters of sonication are: (i) power; (ii) duration of treatment; (iii) volume of the treated sample. The specific energy (Es) is an indicator of the intensity of the ultrasound treatment because it incorporates the transferred power, the duration of sonication and the treated volume. In this study, the importance of this parameter for the disinfection efficiency was assessed through changes in volume of treated water, water flow rate and electrical power of the ultrasonic reactor. In addition, the influences of the initial bacterial concentration on the disinfection efficiency were examined. The disinfection efficiency of the ultrasonic technique was scored on a homogenous and on a mixed bacterial culture suspended in water with two different types of ultrasonic reactors (Telsonic and Bandelin). This study demonstrates that specific energy, treatment time of water with ultrasound and number of passages through the ultrasonic reactor are crucial influential parameters of ultrasonic disinfection of contaminated water in a pilot scale water disinfection system. The promising results obtained in this study on a pilot scale water disinfection system indicate the possible application of ultrasound technology to reduce bacterial contamination in recirculating process water to an acceptable low level. However, the energy demand of the ultrasound equipment is rather high and therefore it may be advantageous to apply ultrasound in combination with another treatment.  相似文献   

8.
Acoustic fields formed during operation of ultrasonic reactors with waveguides of following types: rod-type, cylindrical with rectangular protrusions and tubular were calculated and measured. The influence of distribution of acoustic fields arising from the operation of waveguide systems of three different types on the efficiency of ultrasonic activation of alumosilicic flocculant-coagulant and magnetite intended for water purification was investigated. It was shown that regardless of the equipment used on an industrial scale it is possible to reactivate the alumosilicic flocculant-coagulant even after the shelf life period of it passed, however in case of activation of magnetite the use of a bigger reactor in inefficient.In case of industrial scale processes, the choice of the correct reactor design is of significant importance, since it allows to reduce the required processing time, and, as a result, the energy consumption of the processes. The advantages of tubular waveguide systems include the possibility of processing large volumes of liquid. The high efficiency and uniformity of the excited ultrasonic fields can lead to reduction of operating costs. In case of smaller flows, the waveguide system with rectangular protrusions allowed to obtain better results.Our work illustrates the dependence of the success of a specific method on the choice of the waveguide and the size of the reactor during upscale.  相似文献   

9.
The ultrasonic horn and bath reactors were compared based on production of angiotensin-converting-enzyme (ACE) inhibitory peptides from defatted wheat germ proteins (DWGP). The DWGP was sonicated before hydrolysis by Alcalase. Degree of hydrolysis, ACE-inhibitory activity, surface hydrophobicity, fluorescence intensity, free sulfhydryl (SH), and disulfide bond (SS) were determined. The highest ACE-inhibitory activity of DWGP hydrolysate was obtained at power intensity of 191.1 W/cm2 for 10 min in the ultrasonic horn reactor. The fixed frequency of 33 kHz and the sweep frequency of 40 ± 2 kHz resulted in the maximum ACE-inhibitory activity. The combined irradiation of dual fixed frequency (24/68 kHz) produced significant increase in ACE-inhibitory activity compared with single frequency (33 kHz). The ultrasonic probe resulted in significant higher ACE-inhibitory activity compared with ultrasonic bath operating at single or dual fixed and sweep frequencies. The changes in conformation of the DWGP due to sonication were confirmed by the changes in fluorescence intensity, surface hydrophobicity, SHf and SS contents and they were found in conformity with the ACE-inhibitory activity in case of the ultrasonic horn reactor but not in bath reactor.  相似文献   

10.
The present work has been carried out in order to design a new type of ultrasonic reactor consisting of a double-structured tank. The inner working compartment is built with a slant bottom to allow a better ultrasonic transmission. This paper reports the effect of the inclination angle on acoustic efficiency for several different plates, e.g. two plates made of glass (2 mm and 3 mm thickness) and one made of PVC (3 mm thickness). The acoustic efficiency was determined as the ratio of the signal measured by a hydrophone in the presence of the plate to that signal in the absence of the plate. Having optimised the system, the ultrasonic powers in the inner and the outer compartments of the slant bottom reactor were determined by hydrogen peroxide dosimetry.  相似文献   

11.
The aim of this work was to determine mass transfer coefficients in the cases of ultrasonically-assisted and classical stirred dead-end ultrafiltration. A comparative study was then performed, and mass transfer coefficients obtained under ultrasonic conditions are described by an empirical model. This correlation results from an analogy with what is observed using a stirred cell and involves the ultrasonic power as the main parameter. The hydrodynamics are assumed to depend on the intensity of the ultrasound effects illustrated by the agitation arising within the cell. This agitation is due to convective currents as well as physical effects due to cavitation. The concentration polarization phenomenon is therefore affected by this action of ultrasonic waves.  相似文献   

12.
Ultrasound (US) and Microwaves (MW) are effective methods for processes intensification. Their combined use in the same reactor can lead to remarkable results. Recently there has been a resurgence of interest in this field for new synthetic applications using reactors based upon existing technologies. We describe here a new type of apparatus in which the thermal energy is continuously removed from the system making possible the use of high power and adjustable ultrasonic and microwave densities throughout the process. The installation consists of a glass reactor located in a monomode applicator which is immersed at the same time in an ultrasonic device which can be operated at different frequencies and powers. A liquid, transparent to microwaves, was used to couple ultrasonic energy to the reactor and to remove the heat generated. Comsol software was used to get information about the distribution of ultrasonic and microwave energy between the reactor liquid and the coupling fluid. The performance was assessed using the conversion of p-nitrophenol into 4-nitrocatechol as a chemical dosimeter and a transesterification.  相似文献   

13.
The pulp and paper industry is in continuous need for energy-efficient production processes. In the refining process of mechanical pulp, fibrillation is one of the essential unit operations that count for up to 80% of the total energy use. This initial study explores the potential and development of new type of scalable ultrasound reactor for energy efficient mechanical pulping. The developed reactor is of continuous flow type and based on both hydrodynamic and acoustic cavitation in order to modify the mechanical properties of cellulose fibers. A comparison of the prototype tube reactor is made with a batch reactor type where the ultrasonic horn is inserted in the fluid. The pulp samples were sonicated by high-intensity ultrasound, using tuned sonotrodes enhancing the sound pressure and cavitation intensity by a controlled resonance in the contained fluid. The resonant frequency of the batch reactor is 20.8 kHz and for the tube reactor it is 22.8 kHz. The power conversion efficiency for the beaker setup is 25% and 36% in case of the tube reactor in stationary mode. The objective is to verify the benefit of resonance enhanced cavitation intensity when avoiding the effect of Bjerkenes forces. The setup used enables to keep the fibers in the pressure antinodes of the contained fluid. In case of the continuous flow reactor the effect of hydrodynamic cavitation is also induced. The intensity of the ultrasound in both reactors was found to be high enough to produce cavitation in the fluid suspension to enhance the fiber wall treatment. Results show that the mechanical properties of the fibers were changed by the sonification in all tests. The continuous flow type was approximately 50% more efficient than the beaker. The effect of keeping fibers in the antinode of the resonant mode shape of the irradiation frequency was also significant. The effect on fiber properties for the tested mass fraction was determined by a low-intensity ultrasound pulse-echo based measurement method, and by a standard pulp analyzer.  相似文献   

14.
Laboratory scale 20 kHz sonochemical reactors with different geometries have been tested using thermal probes, the kinetics of H(2)O(2) formation, and the kinetics of diphenylmethane (DPhM) sonochemical darkening. Results revealed that the overall sonochemical reaction rates in H(2)O and DPhM are driven by the total absorbed acoustic energy and roughly independent the geometry of the studied reactors. However, the sonochemical efficiency, defined as eta=VG/S, where G is a sonochemical yield of H(2)O(2), V is a volume of sonicated liquid, and S is a surface of the sonotrode, was proved to increase with the decrease of S. This phenomenon was explained by growing of the maximum cavitating bubble size with ultrasonic intensity and its independence towards the specific absorbed acoustic power. For the cleaning bath reactor the kinetics of the sonochemical reactions in H(2)O and DPhM depends strongly on the reaction vessel materials: the reaction rates decreased with the increase of the materials elasticity. Kinetic study of H(2)SO(4) sonolysis using a sonoreactor without direct contact with titanium sonotrode showed that sulphate anion is an effective scavenger of OH() radicals formed during water sonolysis.  相似文献   

15.
The present study deals with the size reduction based on the recrystallization (antisolvent approach using water) of 3,3′-Diamino Diphenyl Sulfone (DADPS) using different types of cavitational reactors as an alternative to the conventional process of mechanical size reduction, which is an energy intensive approach. Ultrasound was applied for fixed time specific to the reactors namely ultrasonic probes at different power dissipation levels and also ultrasonic bath. A High Speed Homogenizer was also used at varying speeds of rotation to establishing the efficacy for size reduction. The processed sample was analysed for particle size and morphology using particle size analyser and optical microscopy respectively. The final yield of recrystallization was also determined. The power density in W/L and power intensity in W/m2 calculated for each equipment has been used to establish efficacy for size reduction since all devices had dissimilar configurations. Based on the studies of varying power intensity of the different US equipment, it was established that larger the power intensity and power density, smaller was the resultant final particle size after treatment for same time. Among the various ultrasonic devices used, Sonics VCX750 probe yielded the best size reduction of 85.47% when operated at 40% amplitude for 60 min for a volume of 200 ml. A High Speed Homogenizer used at 7000 rpm gave 92.35% of size reduction in 15 min operation and also demonstrated the best energy efficiency. The work has elucidated the comparison of different cavitational devices for size reduction for the first time and presented the best reactors and conditions for the desired size reduction.  相似文献   

16.
燃油分级多点喷射低污染燃烧室的化学反应网络模型分析   总被引:4,自引:0,他引:4  
本文采用基于详细化学反应机理的化学反应网络模型分析了航空发动机燃油径向分级多点喷射低污染燃烧室的NO_x排放特性。该分级燃烧室不同于传统燃烧室,头部由值班区和主燃区两个不同的燃烧区域,根据CFD得到的流场特性和当量比的分布特性对燃烧室进行分区构建化学反应器网络模型,研究了值班级当量比以及值班级和主燃级两级供油比例对排放的影响。同时,还分析了空气进口温度对NO_x排放的影响。得到了较为合理的变化趋势,为低污染燃烧室的初步设计提供了有益的指导。  相似文献   

17.
连续搅拌槽式反应器中自催化化学反应的延迟同步   总被引:2,自引:0,他引:2       下载免费PDF全文
李勇  毕勤胜 《物理学报》2008,57(10):6099-6102
讨论了由两个连续搅拌槽式反应器组成的化学反应系统的延迟同步问题.基于Lyapunov稳定性理论,通过选择适当的输出和同步信号得到了使反应实现延迟同步的控制函数,并用数值模拟验证了方法的有效性.最后指出延迟同步误差系统存在着两种不同的时间尺度. 关键词: 延迟同步 化学反应 连续搅拌槽式反应器 时间尺度  相似文献   

18.
The effectiveness of tube and sonotrode reactors for the sonication of sewage sludge under identical conditions was compared for the first time. Despite the considerable structural differences, sonication with each ultrasonic reactor led to an accelerated degradation rate and an increased methane production within the first five days for the majority of the sewage sludge samples tested. On closer examination, however, it becomes clear that the investigated sonication systems are not equally suitable for the substrates considered. While the use of a sonotrode proved to be particularly advantageous for the treatment of waste activated sludge (+25% methane yield at 300 kJ/kgTS), the use of a 2-inch tube reactor achieved the highest enhancement for low-intensity sonication in digested sludge (+22% methane yield at 300 kJ/kgTS). With increasing energy input, more chemical oxygen demand was solubilized, but this did not result in an increase in methane yield for all samples. Sonication of waste activated sludge led to a significant reduction in viscosity of up to 50%, and a reduction of up to 60% was observed after sonication of digested sludge with low energy inputs. The study, therefore, demonstrates that the choice of the most suitable sonication system essentially depends on the properties of the sludge to be sonicated.  相似文献   

19.
Experimental study of the ultrasound attenuation in chemical reactors   总被引:2,自引:0,他引:2  
Ultrasound is used in different domains, and in sonochemistry particularly, for different purposes and in various flow configurations: monophasic, two-phase and polyphasic reactors. In order to optimize and to design sonochemical reactors, it is important to describe the ultrasonic intensity space and time distribution. In addition, it is important to study the different parameters influencing the intensity profiles of the ultrasonic wave. In this work, a thermoelectric probe has been used to measure the ultrasonic intensity. This procedure has shown that the ultrasound propagation is influenced by the presence of cavitation bubbles, the flow regime and the presence of solid particles.  相似文献   

20.
The equations of a continuously stirred tank reactor in a wide range of the parameters have three stationary solutions describing the hot, cold, and intermediate unstable states. Similarity with the equations for one-dimensional motion indicates the possibility of the stabilization of instability by small high-frequency perturbation (Kapitza pendulum effect). This stabilization has been obtained in numerical simulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号