首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
化学   3篇
物理学   3篇
  2019年   1篇
  2008年   1篇
  2007年   1篇
  1980年   1篇
  1978年   2篇
排序方式: 共有6条查询结果,搜索用时 0 毫秒
1
1.
    
Ohne Zusammenfassung  相似文献   
2.
    
Ohne Zusammenfassung  相似文献   
3.
4.
To test modified Newtonian dynamics (MOND) on galactic scales, we study six strong gravitational lensing early-type galaxies from the CASTLES sample. Comparing the total mass (from lensing) with the stellar mass content (from a comparison of photometry and stellar population synthesis), we conclude that strong gravitational lensing on galactic scales requires a significant amount of dark matter, even within MOND. On such scales a 2 eV neutrino cannot explain the excess of matter in contrast with recent claims to explain the lensing data of the bullet cluster. The presence of dark matter is detected in regions with a higher acceleration than the characteristic MOND scale of approximately 10(-10) m/s(2). This is a serious challenge to MOND unless lensing is qualitatively different [possibly to be developed within a covariant, such as Tensor-Vector-Scalar (TeVeS), theory].  相似文献   
5.
Increasing energy demands and more stringent legislation relating to pollutants such as nitrogen oxide (NOx) and carbon monoxide (CO) from fossil fuels have accelerated the use of biofuels such as biodiesel. However, current limitations of using biodiesel as an alternative fuel for CI engines include a higher viscosity and higher NOx emissions. This is a major issue that could be improved by blending biodiesel with alcohols. This paper investigates the effect of a butanol–acetone mixture (BA) as an additive blended with biodiesel to improve the latter's properties. Macroscopic spray characteristics (spray penetration, spray cone angle and spray volume) were measured in constant volume vessel (CVV) at two injection pressures. A high-speed camera was used to record spray images. The spray's edge was determined using an automatic threshold calculation algorithm to locate the spray outline (edge) from the binary images. In addition, an engine test was carried out experimentally on a single-cylinder diesel engine. The engine's performance was measured using in-cylinder pressure, brake power (BP) and specific fuel consumption (SFC). Emission characteristics NOx, CO and UHC were also measured. Neat biodiesel and three blends of biodiesel with up to 30% added BA were tested. The experimental data were analyzed via ANOVA to evaluate whether variations in parameters due to the different fuels were significant. The results showed that BA can enhance the spray characteristics of biodiesel by increasing both the spray penetration length and the contact surface area, thereby improving air–fuel mixing. The peak in-cylinder pressure for 30% BA was comparable to neat diesel and higher than that of neat biodiesel. Brake power (BP) was slightly improved for 10% BA at an engine speed of 2000 rpm while SFC was not significantly higher for any of the BA-biodiesel blends because of the smaller heating value of BA. Comparing the effect on emissions of adding BA to biodiesel, increasing the amount of BA reduced NOx and CO (7%) and (40%) respectively compared to neat biodiesel, but increased UHC.  相似文献   
6.
For meaningful assessment of results from laboratory and pilot plant trials, it is often necessary to know the mixing characteristics within the ultrasonic reactors. Previous workers have used conductivity measurements in an attempt to characterize the residence time distribution in ultrasonic reactors, but these results do not provide direct data on the mixing within the high power region adjacent to the ultrasonic probe tip. We overcome this difficulty through direct visualization of the mixing process within the high energy region close to the tip of the ultrasonic probe. Our analysis proceeds by determining an approximate turbulent diffusivity in a batch reactor arrangement for different values of ultrasonic energy input. For input electrical power levels between 70 and 120 W and a processing volume of 30 ml, the effective turbulent diffusivity varied from about 0.2 x 10(-3) to 0.7 x 10(-3)m(2)/s. We demonstrate that such results can be coupled to a suitable dispersion model to estimate the actual residence time distribution in flow-though arrangements when the through-put adds little additional mixing energy. Therefore, coupling the effective turbulent diffusivity identified in a batch reactor with a suitable dispersion model for the reactor offers an alternative approach to the deduction of RTD when determining the actual RTD in the high intensity zone of steady flow sonochemical reactors is problematic.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号