首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Structural and dynamical properties of the Tl(I) ion in dilute aqueous solution have been investigated by ab initio quantum mechanics in combination with molecular mechanics. The first shell plus a part of the second shell were treated by quantum mechanics at Hartree-Fock level, the rest of the system was described by an ab initio constructed potential. The radial distribution functions indicate two different bond lengths (2.79 and 3.16 A) in the first hydration shell, in good agreement with large-angle X-ray scattering and extended X-ray absorption fine structure spectroscopy results. The average first shell coordination number was found as 5.9, and several other structural parameters such as coordination number distributions, angular distribution functions, and tilt- and theta-angle distributions were evaluated. The ion-ligand vibration spectrum and reorientational times were obtained via velocity auto correlation functions. The Tl-O stretching force constant is very weak with 5.0 N m(-1). During the simulation, numerous water exchange processes took place between first and second hydration shell and between second shell and bulk. The mean ligand residence times for the first and second shell were determined as 1.3 and 1.5 ps, respectively, indicating Tl(I) to be a typical "structure-breaker". The calculated hydration energy of -84 +/- 16 kcal mol(-1) agrees well with the experimental value of -81 kcal mol(-1). All data obtained for structure and dynamics of hydrated Tl(I) characterize this ion as a very special case among all monovalent metal ions, being the most potent "structure-breaker", but at the same time forming a distinct second hydration shell and thus having a far-reaching influence on the solvent structure.  相似文献   

2.
Structural and dynamical properties of the Cr(III) ion in aqueous solution have been investigated using a combined ab initio quantum mechanical/molecular mechanical (QM/MM) molecular dynamics simulation. The hydration structure of Cr(III) was determined in terms of radial distribution functions, coordination numbers, and angular distributions. The QM/MM simulation gives coordination numbers of 6 and 15.4 for the first and second hydration shell, respectively. The first hydration shell is kinetically very inert but by no means rigid and variations of the first hydration shell geometry lead to distinct splitting in the vibrational spectra of Cr(H(2)O)(6) (3+). A mean residence time of 22 ps was obtained for water ligands residing in the second hydration shell, which is remarkably shorter than the experimentally estimated value. The hydration energy of -1108 +/- 7 kcal/mol, obtained from the QM/MM simulation, corresponds well to the experimental hydration enthalpy value.  相似文献   

3.
Structural and dynamical properties of Ge (II) in aqueous solution have been investigated using the novel ab initio quantum mechanical charge field (QMCF) molecular dynamics (MD) formalism. The first and second hydration shells were treated by ab initio quantum mechanics at restricted Hartree–Fock (RHF) level using the cc‐pVDZ‐PP basis set for Ge (II) and Dunning double‐ζ plus polarization basis sets for O and H. Besides ligand exchange processes and mean ligand residence times to observe dynamics, tilt‐ and theta‐angle distributions along with an advanced structural parameter, namely radial and angular distribution functions (RAD) for different regions were also evaluated. The combined radial and angular distribution depicted through surface plot and contour map is presented to provide a detailed insight into the density distribution of water molecules around the Ge2+ ion. A strongly distorted hydration structure with two trigonal pyramidal substructures within the first hydration shell is observed, which demonstrates the lone‐pair influence and provides a new basis for the interpretation of the catalytic and pharmacological properties of germanium coordination compounds. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

4.
Structural and dynamical properties of the TiO(2+) ion in aqueous solution have been investigated by using the new ab initio quantum mechanical charge field (QMCF) molecular dynamics (MD) formalism, which does not require any other potential functions except those for solvent-solvent interactions. Both first and second hydration shell have been treated at Hartree-Fock (HF) quantum mechanical level. A Ti-O bond distance of 1.5 A was observed for the [Ti=O](2+) ion. The first hydration shell of the ion shows a varying coordination number ranging from 5 to 7, five being the dominant one and representing one axial and four equatorial water molecules directly coordinated to Ti, which are located at 2.3 A and 2.1 A, respectively. The flexibility in the coordination number reflects the fast exchange processes, which occur only at the oxo atom, where water ligands are weakly bound through hydrogen bonds. Considering the first shell hydration, the composition of the TiO(2+) hydrate can be characterized as [(H(2)O)(0.7)(H(2)O)(4) (eq)(H(2)O)(ax)](2+). The second shell consists in average of 12 water molecules located at a mean distance of 4.4 A. Several other structural parameters such as radial and angular distribution functions and coordination number distributions were analyzed to fully characterize the hydration structure of the TiO(2+) ion in aqueous solution. For the dynamics of the TiO(2+) ion, different sets of dynamical parameters such as Ti=O, Ti-O(eq), and Ti-O(ax) stretching frequencies and ligands' mean residence times were evaluated. During the simulation time of 15 ps, 3 water exchange processes in the first shell were observed at the oxo atom, corresponding to a mean residence time of 3.6 ps. The ligands' mean residence time for the second shell was determined as 3.5 ps.  相似文献   

5.
The structural and dynamical properties of high-spin Ru2+ in aqueous solution have been theoretically studied using molecular dynamics (MD) simulations. The conventional MD simulation based on pair potentials gives the overestimated average first shell coordination number of 9, whereas the value of 5.9 was observed when the three-body corrected function was included. A combined ab initio quantum mechanical/molecular mechanical (QM/MM) molecular dynamics simulation has been performed to take into account the many-body effects on the hydration shell structure of Ru2+. The most important region, the first hydration shell, was treated by ab initio quantum mechanics at UHF level using the SBKJC VDZ ECP basis set for Ru2+ and the 6-31G basis sets for water. An exact coordination number of 6 for the first hydration shell was obtained from the QM/MM simulation. The QM/MM simulation predicts the average Ru2+–O distance of 2.42 Å for the first hydration shell, whereas the values of 2.34 and 2.46 Å are resulted from the pair potentials without and with the three-body corrected simulations, respectively. Several other structural properties representing position and orientation of the solvate molecules were evaluated for describing the hydration shell structure of the Ru2+ ion in dilute aqueous solution. A mean residence time of 7.1 ps was obtained for water ligands residing in the second hydration shell.  相似文献   

6.
The ab initio quantum mechanical charge field molecular dynamics (QMCF MD) formalism was applied to simulate the bicarbonate ion, HCO3?, in aqueous solution. The difference in coordination numbers obtained by summation over atoms (6.6) and for the solvent‐accessible surface (5.4) indicates the sharing of some water molecules between the individual atomic hydration shells. It also proved the importance to consider the hydration of the chemically different atoms individually for the evaluation of structural and dynamical properties of the ion. The orientation of water molecules in the hydration shell was visualized by the θ–tilt surface plot. The mean residence time in the surroundings of the HCO3? ion classify it generally as a structure‐breaking ion, but the analysis of the individual ion‐water hydrogen bonds revealed a more complex behavior of the different coordination sites. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

7.
Structural properties of the hydrated Rb(I) ion have been investigated by ab initio quantum mechanical/molecular mechanical (QM/MM) molecular dynamics (MD) simulations at the double-zeta HF quantum mechanical level. The first shell coordination number was found to be 7.1, and several other structural parameters such as angular distribution functions, radial distribution functions and tilt- and theta-angle distributions allowed the full characterization of the hydration structure of the Rb(I) ion in dilute aqueous solution. Velocity autocorrelation functions were used to calculate librational and vibrational motions, ion-ligand motions, as well as reorientation times. Different dynamical parameters such as water reorientation, mean ligand residence time, the number of ligand exchange processes, and rate constants were also analyzed. The mean ligand residence time for the first shell was determined as tau = 2.0 ps.  相似文献   

8.
9.
An ab initio quantum mechanical/molecular mechanical (QM/MM) molecular dynamics (MD) simulation at double-zeta restricted Hartree-Fock (RHF) level was performed at 293.15 K, including first and second hydration shell in the QM region to study the structural and dynamical properties of the Be(II)-hydrate in aqueous solution. The first tetrahedrally arranged hydration shell, with the four water molecules located at a mean Be-O distance of 1.61 A, is highly inert with respect to ligand exchange processes. The second shell, however, consisting in average of approximately 9.2 water ligands at a mean Be-O distance of 3.7 A and the third shell at a mean Be-O distance of 5.4 A with approximately 19 ligands rapidly exchange water molecules between them and with the bulk, respectively. Other structural parameters such as radial and angular distribution functions (RDF and ADF) and tilt- and theta-angle distributions were also evaluated. The dynamics of the hydrate were studied in terms of ligand mean residence times (MRTs) and librational and vibrational frequencies. The mean residence times for second shell and third shell ligands were determined as 4.8 and 3.2 ps, respectively. The Be-O stretching frequency of 658 cm(-1), associated with a force constant of 147 N m(-1) could be overestimated but it certainly reflects the exceptional stability of the ion-ligand bond in the first hydration shell.  相似文献   

10.
The hydration structure of Cr(2+) has been studied using molecular dynamics (MD) simulations including three-body corrections and combined ab initio quantum mechanical/molecular mechanical (QM/MM) MD simulations at the Hartree-Fock level. The structural properties are determined in terms of radial distribution functions, coordination numbers, and several angle distributions. The mean residence time was evaluated for describing ligand exchange processes in the second hydration shell. The Jahn-Teller distorted octahedral [Cr(H(2)O)(6)](2+) complex was pronounced in the QM/MM MD simulation. The first-shell distances of Cr(2+) are in the range of 1.9-2.8 A, which are slightly larger than those observed in the cases of Cu(2+) and Ti(3+). No first-shell water exchange occurred during the simulation time of 35 ps. Several water-exchange processes were observed in the second hydration shell with a mean residence time of 7.3 ps.  相似文献   

11.
12.
Structural properties of the hydrated Pb(II) ion have been investigated by ab initio quantum mechanical/molecular mechanical molecular dynamics simulations at Hartree-Fock quantum mechanical level. The first shell coordination number was found to be nine, and several other structural parameters such as angular distribution functions, radial distribution functions, and tilt- and theta-angle distributions allow the full characterization of the hydration structure of the Pb(II) ion.  相似文献   

13.
Yang T  Bursten BE 《Inorganic chemistry》2006,45(14):5291-5301
The structures of aquo complexes of the curium(III) ion have been systematically studied using quantum chemical and molecular dynamics (MD) methods. The first hydration shell of the Cm3+ ion has been calculated using density functional theory (DFT), with and without inclusion of the conductor-like polarizable continuum medium (CPCM) model of solvation. The calculated results indicate that the primary hydration number of Cm3+ is nine, with a Cm-O bond distance of 2.47-2.48 A. The calculated bond distances and the hydration number are in excellent agreement with available experimental data. The inclusion of a complete second hydration shell of Cm3+ has been investigated using both DFT and MD methods. The presence of the second hydration shell has significant effects on the primary coordination sphere, suggesting that the explicit inclusion of second-shell effects is important for understanding the nature of the first shell. The calculated results indicate that 21 water molecules can be coordinated in the second hydration shell of the Cm3+ ion. MD simulations within the hydrated-ion model suggest that the second-shell water molecules exchange with the bulk solvent with a lifetime of 161 ps.  相似文献   

14.
15.
An ab initio quantum mechanical charge field (QMCF) molecular dynamics simulation has been performed to study the structural and dynamical properties of a dilute aqueous HCl solution. The solute molecule HCl and its surrounding water molecules were treated at Hartree‐Fock level in conjunction with Dunning double‐ζ plus polarization function basis sets. The simulation predicts an average H? Cl bond distance of 1.28 Å, which is in good agreement with the experimental value. The HHCl···Ow and ClHCl···Hw distances of 1.84 and 3.51 Å were found for the first hydration shell. At the hydrogen site of HCl, a single water molecule is the most preferred coordination, whereas an average coordination number of 12 water molecules of the full first shell was observed for the chloride site. The hydrogen bonding at the hydrogen site of HCl is weakened by proton transfer reactions and an associated lability of ligand binding. Two proton transfer processes were observed in the QMCF MD simulation, demonstrating acid dissociation of HCl. A weak structure‐making/breaking effect of HCl in water is recognized from the mean residence times of 2.1 and 0.8 ps for ligands in the neighborhood of Cl and H sites of HCl, respectively. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

16.
17.
18.
We present new Lennard-Jones parameters for Cd2+ and Pb2+ ion-water interactions and describe a general methodology to obtain these parameters for any ion. Our strategy is based on the adjustment of ion parameters to reproduce simultaneously experimental absolute hydration free energy and structural properties, namely, g(r) and coordination numbers, obtained from X-ray liquid scattering and quantum mechanical/molecular mechanical (QM/MM) calculations. The validation of the obtained parameters is made by the calculation of dynamical properties and comparing them with experimental values and theoretical results from the literature. The transferability of parameters is checked by the calculation of thermodynamic, structural, and dynamical properties cited above with four different water models. The results obtained for Cd2+ and Pb2+ show an overall agreement with reference values. The absolute hydration free energy calculated with the TIP3P, SPC/E, SPC, and TIP4P water models presents, respectively, percent differences of 3.8, 3.0, 4.3, and 7.2% for lead(II) and 9.8, 8.4, 10.2, and 14.1% for cadmium(II) when compared with experimental values. Ion-water mean distance and coordination numbers for the first coordination shell are in good agreement with experimental and QM/MM results for both ions. Cd2+ shows a lesser diffusion coefficient compared to that of Pb2+ despite its smaller atomic radius, indicating a more persistent first coordination shell for the cadmium(II) ion, a result confirmed with calculations of the mean residence time of water molecules in the first coordination shell.  相似文献   

19.
Molecular dynamics simulations of the Hg2+ ion in aqueous solution have been carried out using an effective two-body potential derived from quantum mechanical calculations. A stable heptacoordinated structure of the Hg2+ first hydration shell has been observed and confirmed by extended X-ray absorption fine structure (EXAFS) experimental data. The structural properties of the Hg2+ hydration shells have been investigated using radial and angular distribution functions, while the dynamical behavior has been discussed in terms of reorientational correlation functions, mean residence times of water molecules in the first and second hydration shells, and self-diffusion coefficients. The effect of water-water interactions on the Hg2+ hydration properties has been evaluated using the SPC/E and TIP5P water models.  相似文献   

20.
管清梅  杨忠志 《中国化学》2007,25(6):727-735
A detailed theoretical investigation on Co^3+ hydration in aqueous solution has been carded out by means of molecular dynamics (MD) simulations based on the atom-bond electronegativity equalization method fused into molecular mechanics (ABEEM/MM). The effective Co^3+ ion-water potential has been constructed by fitting to ab initio structures and binding energies for ionic clusters. And then the ion-water interaction potential was applied in combination with the ABEEM-7P water model to molecular dynamics simulations of single Co^3+(aq.) solution, managing to reproduce many experimental structural and dynamical properties of the solution. Here, not only the common properties (radial distribution function, angular distribution function and solvation energy) obtained for Co^3+ in ABEEM-7P water solution were in good agreement with those from the experimental methods and other molecular dynamics simulations but also very interesting properties of charge distributions, geometries of water molecules, hydrogen bond, diffusion coefficients, vibrational spectra are investigated by ABEEM/MM model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号